
A FUNDAMENTAL STUDY OF SMOLDERING WITH EMPHASIS ON EXPERIMENTAL

DESIGN FOR ZERO-G

NASA GRANT No. NAG-3-443, NASA LeRC

FINAL PROGRESS REPORT

Carlos Fernandez-Pello, P.I.

Patrick J. Pagni, Co-P.I.

Department of Mechanical Engineering

University of California, Berkeley

Berkeley, CA 94720

Submitted to:

NASA LEWIS RESEARCH CENTER

Space Experiments Division

Cleveland, OH 44135

August 1995





ABSTRACT

A research program to study smoldering combustion with

emphasis on the design of an experiment to be conducted in the

Space Shuttle was conducted at the Department of Mechanical

Engineering, University of California Berkeley under NASA

sponsorship. The motivation of the research is the interest in

smoldering both as a fundamental combustion problem and as a
serious fire risk. Research conducted included theoretical and

experimental studies that have brought considerable new

information about smolder combustion, the effect that buoyancy

has on the process, and specific information for the design of a

space experiment. Experiments were conducted at normal gravity,

in opposed and forward mode of propagation and in the upward and

downward direction to determine the effect and range of influence

of gravity on smolder. Experiments were also conducted in

microgravity, in a drop tower and in parabolic aircraft flights,

where the brief microgravity periods were used to analyze

transient aspects of the problem. Significant progress was made

on the study of one-dimensional smolder, particularly in the

opposed-flow configuration. These studies provided the background

for a continuation research program currently underway on

smoldering, also supported by NASA. They also provided enough

information to design a small-scale space-based experiment and

that was successfully conducted in the Spacelab Glovebox in the

June 1992 USML-I/STS-50 mission of the Space Shuttle Columbia.



I. INTRODUCTION

Smoldering is defined as a non-flaming, surface combustion

reaction, that propagates through the interior of porous
combustible materials. The propagation of the smolder reaction is

a complex phenomena involving processes related to the transport
of heat and mass in a porous media, together with surface chemi-

cal reactions. Smoldering is a weakly reacting phenomena, and

generally propagates very slowly. However, it can play an impor-
tant role in the initiation of unwanted fires because of the

potential rapid transition from the slow smoldering reaction to
the flaming combustion of the material. Furthermore, smoldering
is often difficult to detect and suppress because it may take

place in the material interior and the porosity of the material

may prevent the access of the extinguishing agent to the reaction
zone. Thus, understanding of the physical and chemical mechanisms

controlling smoldering is important not only because smoldering
is a fundamental combustion process, but because such understand-

ing can be critical to the prevention and control of destructive
fires.

Smoldering is classified into opposed and forward

configurations according to the direction in which the oxidizer
flows toward the reaction zone. In opposed smolder, the oxidizer

enters the reaction zone opposing the direction of propagation,
and in forward smolder in the same direction, since in the

reference frame of the reaction zone the fuel and oxidizer enter

the reaction zone from the same direction in opposed smolder and

in the opposite direction in forward smolder, the former type of
smolder has been also referred to as co-current smolder, and the

latter as counter-current. The transport of mass can take place

by mixed convection, forced and free, and by diffusion. This
leads to a secondary classification of smoldering into convection
driven and diffusion driven smolder. At normal gravity there is

yet another classification into downward and upward smolder

propagation.

Research conducted under this grant included theoretical and

experimental studies of both opposed and forward smolder, that

have brought considerable new information about smolder com-
bustion and the effect that buoyancy has on the process. During

the initial stages of the research program, emphasis was given

to the development of a theoretical foundation for the program.
Once the theoretical development reached a stage where

comparison with experiments was deemed necessary, the emphasis
was shifted to the experimental program. The objective of the

experiments was to determine the effect of buoyancy (gravity) on

smoldering, and to provide a data base for theoretical models

verification. Experiments indicated that buoyancy had a small
influence on the one-dimensional, co-current smoldering of

cellulose and only at very low forced flow air velocities. It has

a significant influence, however, when smolder occurs in a
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gas-solid interface. Unfortunately, cellulose powder sediments
and it is not possible to do upward burning experiments, or to
significantly vary the void fraction in normal gravity. For this
reason the research was switched to conducting the experiments
with polyurethane foam.

Polyurethane foam, however, smolders only in a narrow range
of conditions. After testing several ignition methods, a reliable
ignition system was developed, and a vigorous ground based
experimental program followed. A series of experiments in normal
gravity for downward and upward, natural convection, co-current
smoldering of polyurethane foam were completed. Another series
of experiments were conducted at the NASA LeRC 2.2 seconds
Drop-Tower to observe trends in the ignition characteristics of
the foam, and to attempt to infer how smoldering will behave in
microgravity. These tests were followed by another series of
variable gravity smolder experiments conducted in the KC-135 and
Lear-jet aircraft.

II. RESEARCH PROGRESS

The research program was planned to follow a progressive

path aimed to acquire the information needed to design smolder

experiments to be carried out in a space-based laboratory. The

experiments would provide data, which in conjunction with
theoretical models, would help to elucidate the mechanisms

controlling smolder, and its potential behavior in a space
environment. The research conducted under this grant is

summarized below. References are given, to papers published or

presented at meetings, that describe the work in more detail.

II.l THEORY

During the initial stages of the research program efforts
were concentrated on the development of theoretical models of

smolder. Models of opposed (co-current) and forward (counter-

current) smoldering under pure forced-flow, zero-gravity, condi-
tions were developed [1,2,4]. The models describe the propagation

of a smolder reaction through a porous solid fuel, and the

resulting governing equations consist of the Darcy equation to
describe the flow through the porous media, and the energy and

species equations to describe the heat released at the reaction
and the transport of heat and mass to and from the reaction.

Because of the microgravity environment, it is assumed that the

propagation of the smolder reaction is one-dimensional and

steady. Radiation heat transfer is incorporated using the

diffusion approximation and smolder combustion is modeled by a

finite rate, one step reaction mechanism. Because the solid and

the gas move at different velocities, both the smolder

temperature, and the smolder velocity are eigenvalues.



The resulting dimensionless equations are similar to those
governing the propagation of a laminar premixed flame for opposed
smolder, and to a diffusion flame for forward smolder. From these
non-dimensional equations the non-dimensional groups that control
smoldering were identified for their use in the definition of
the experiments [1,2,4]. The solution of the equations provided
explicit expressions for the char oxidation velocity, and smolder
reaction velocity and temperature. A global energy balance
between the energy released in the reaction and the energy

_equired to preheat the solid and the gas provides an explicit
expression for the smolder velocity. The key predictions are that
the smolder reaction temperature increases logarithmically and
the smolder velocity linearly with the oxygen mass flux reaching
the reaction.

II.2 EXPERIMENTS

Once the theoretical development reached a stage where

comparison with experiments was deemed necessary, the emphasis

was shifted to the development of the experimental aspect of the
project. The scope of the experiments was the determination of

how, and under what conditions, buoyancy (gravity) affects

smoldering, and to provide a data base for comparison with theo-
retical models.

II.2.1 Cellulose Smoldering

Experiments were first conducted with powder cellulose as

the combustible material [3,5,6] because it smolders easily and
because there is considerable information about the subject in

the technical literature. In the experiments buoyancy was
modified primarily by changing the gas density through the ambi-

ent pressure. These experiments indicated that deep in the

interior of the cellulose sample, buoyancy had a small influence

on the one-dimensional, downward, opposed smoldering and only at

very low forced-flow air velocities. It had a significant

influence, however, when smolder occurred at the gas/solid

interface, or if chimney-induced drafts were present in the
experiments.

Cellulose powder sediments and it is not possible to do

upward burning experiments, or to significantly vary the void
fraction in normal gravity. For this reason the research was

switched to conducting the experiments with a self-supporting

porous fuel, specifically polyurethane foam.

II.2.2 Polyurethane Foam Smoldering

Polyurethane foam smolders only in a narrow range of

conditions, extinguishing, melting, or flaming if these
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conditions are not met. The determination of the range of
conditions at which polyurethane foam smolders, and the
development of an appropriate ignition method was a difficult and
frustrating task that took a considerable amount of time to be
resolved. Finally a reliable ignition system based on an
electrically-heated Nichrome wire sandwiched in two layers of
porous ceramic was developed. This development led to a very
active and vigorous ground-based experimental program on the
smoldering characteristics of polyurethane foam.

II.2.2.1 Natural Convection

A series of experiments in normal gravity for downward and

upward, natural-convection smoldering of polyurethane foam was
completed first [7]. The experiments showed that for the foam

used, buoyancy influences the smolder reaction only for fuel

heights of around 5 cm or smaller. For larger foam heights,

normal-gravity buoyancy can not overcome the friction losses in

the sample interior and generate convective flows, unless a

chimney effect is created by the hot char left by the propagating

smolder reaction or by external means (a duct located on top of

the fuel, for example). Under these conditions the smolder

velocity for both upward and downward smolder are similar. These
results indicate that the air contained in the foam pores may be

sufficient to sustain smolder. This result could be of particular

importance if smoldering were to occur in a spacecraft, since

microgravity provides an insulating environment and the heat from

the smolder reaction, not being convectively removed, could lead
to an enhancement of the smolder reaction, or even to the

transition to flaming.

II.2.2.2 Forced Flow

The above experiments were followed by another series of

experiments of forced flow smoldering, opposed and forward, [8].

In addition to providing information about the smolder process in

forced flows, the experiments had the objective of determining

the range of flow velocities at which buoyancy has a significant

role in the smolder process. This was accomplished by comparing

the results for upward and downward smoldering. Measurements

conducted in these experiments included the smolder propagation

velocity and reaction zone temperatur_ as a function of the air

flow velocity, the location of the smolder front along the

sample, and the direction of smolder propagation (downward and

upward).

The experimental results showed that there are some common

characteristics to all the smolder configurations tested. All the

experiments showed that three zones with distinct smolder

characteristics can be identified along the foam sample. An

initial zone near the igniter where the smolder process is
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influenced by heat transfer from the igniter, an intermediate
zone where smolder is self-sustained and free from external
effects, and a third zone near the sample end that is strongly
affected by convective currents. The smolder reaction propagation
velocity and temperature generally have a direct correspondence
and vary in each one of these three zones. The analysis of these
variations confirmed that the smolder process is controlled by
the competition between the supply of oxidizer to the reaction
zone and the loss of heat from the reaction zone. However, the
variation of the smolder velocity and temperature with the forced
flow is quantitatively different for opposed and forward
smoldering due to the different effect that the flow direction of
the oxidizer and post-combustion gases have in each case.

Opposed Smoldering [8]: The variation with the opposed, forced

air flow of the smolder propagation velocity and temperature
shows that both parameters reach a maximum at flow velocities of

approximately 2.5 mm/sec. At low flow velocities, oxygen
depletion is the dominant factor controlling the smolder

process, and the smolder velocity and temperatures are small.

Increasing the flow velocity strengthens the smolder reaction due

to the addition of oxidizer, which results in larger smolder

velocities and temperatures. At even larger flow velocities

convective cooling becomes dominant causing the weakening and

final extinction of the smolder reaction. These competing

mechanisms play a very important role in the end region of the

sample where buoyancy-generated currents result in the strong

enhancement of the reaction or in its extinction, depending on

whether oxygen supply or convective cooling is the controlling

smolder mechanism. Comparison between downward and upward

smoldering indicates that gravity influences the smolder

combustion of this type of foam for forced flow velocities

smaller than 3 mm/sec, and sample sizes smaller than 50 mm.

Forward Smolderlng [9]: The results of the dependence on the

forced flow velocity of the smolder propagation velocity and

temperature shows that in this case the smolder velocity always

increases and the temperature decreases with the air flow rate,

regardless of the sample location. These trends are the result of

the hot post-combustion gases being convected ahead of the

smolder front. Although they preheat the virgin material favoring

the propagation of the reaction, they also dilute the oxidizer

ahead of the reaction weakening it and reducing its temperature.

For upward smoldering, transition to flaming was observed to
occur in the char at the zone closer to the sample end and for

air velocities of 15 mm/sec or larger. Comparison between upward
and downward smoldering also showed that the effect of gravity

takes place for air flow rates smaller than 3 mm/sec.

The differences observed between the opposed and forward

smolder measurements can be explained by the differences in each

case between the flow direction of the oxidizer and post-combus-

tion gases. In the former case, the cold oxidizer flows opposite
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to the smolder reaction propagation, and as the air velocity is
increased at low flow velocities, the addition of oxidizer
dominates the convective cooling and enhances the smolder
reaction. At larger air velocities, however, convective cooling
becomes dominant and the smolder velocity decreases as the air
velocity is increased. In forward smoldering the oxidizer flows
in the same direction as that of smolder propagation, and the hot
post-combustion gases are convected to the virgin fuel ahead of
the smolder front. The preheating of the virgin fuel results in

an increase in the smolder velocity as the air flow rate is
increased, even though the smolder temperature remains constant,
or even decreases, due to the dilution of oxidizer by the
post-combustion gases. Furthermore, the fresh oxidizer flows
through the hot char, and since the char still contains a large
amount of unburnt fuel secondary reaction may occur in the char,
which under certain flow conditions can result in transition to
flaming.

II.2.2.3 Micro-gravity smoldering

A series of smolder experiments were conducted at the NASA
LeRC 2.2-seconds Drop Tower to observe trends in the ignition

characteristics of the foam, and to attempt to infer how

smoldering will behave in microgravity [10,12]. The parameter

analyzed was the smolder reaction temperature variation with

time, because the temperature itself, or the smolder velocity, do

not change enough in 2.2 seconds to observe significant dif-

ferences. The results for the temperature gradient variation with

the flow velocity indicate that microgravity favors the

initiation of smoldering, and that the upper range of flow veloc-

ities at which buoyancy plays a significant role on smoldering is

around 2mm/sec, in approximate agreement with the normal gravity
experiment.

A series of opposed flow smoldering experiments were also
conducted in the KC-135 aircraft (30 secs of micro-g for up to 40

parabolas) to observe the effects of the variation of the gravity

on the smolder process [ii]. Although the microgravity period

was too short to study steady smoldering in micro-gravity, the

tests provided initial information about the process and permit-
ted the observation of smolder trends as the gravity changes. The

tests also complement the Drop Tower tests summarized above. The

results show that buoyancy affects both the species transport and
transfer of heat to and from the reaction zone. At the reaction

zone, the former is dominant, which results in a decrease of the

smolder temperature in microgravity. Away from the reaction zone

the latter is dominant and the temperature increases due to the
lack of convective cooling. All these effects are less noticeable

as the flow velocity is increased, and as the reaction propagates

toward the sample interior confirming that buoyancy is important

at low flow velocities and near the sample ends. Another series

of parabolic flight experiments have been conducted recently but
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the results have not been analyzed with enough detail to report
then at this time.

Finally, the information obtained from the ground experi-
ments on the smoldering of polyurethane foam was used to design a
small-scale experiment that was carried out in the USML-I/STS-50
mission of the Space Shuttle Columbia in June 1992. The size of

the fuel specimen (a cylinder 5cm in diameter and I0 cm long)

was determined by the constrains of the Glove-box where the

experiments were conducted. Four tests were planned, two in

still air and another two with a low-velocity air flowing around

the sample. Two igniter configurations were designed, one with

the igniter on the cylinder axis and the other with the igniter

at one end of the cylinder.
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Forced Cocurrent Smoldering Combustion

SUDIP S. DOSANJH, PATRICK J. PAGNI, and A. CARLOS FERNANDEZ-PELLO

Mechanical Engineering Department, University of California, Berkeley, CA 94720

An analytic model of the propagation of smoldering combustion through a very porous solid fuel is presented. Here

smoldering is initiated at the top of a long. radially insulated, uniform fuel cylinder, so that the smolder wave

propagates downward, opposing an upward forced flow of oxidizer. Because the solid fuel and the gaseous oxidizer

enter the reaction zone from the same direction, this configuration is referred to as cocurrent (or premixed-flame-

like). It is assumed that the propagation of the smolder wave is one-dimensional and steady in a frame of reference

moving with the wave. Buoyancy is included and shown to be negligible in the proposed application of a smoldering

combustion experiment for use on the Space Shuttle. Radiation heat transfer is incorporated using the diffusion

approximation and smoldering combustion is modeled by a finite rate, one-step reaction mechanism. Because the

solid and the gas move at differem velocities, both the downstream t.empera_re, Tr, and the smolder velocity, o, are

eigenvalnes. The dimensionless equations are very similar to those governing the propagation of a laminar premixed

flame. A straightforward extension of the activation energy asympcotics analysis presented by Williams for premixed

flames yields an expression for a dimensionless eigenvalue determining Tr. A global energy balance provides a

relation for the smolder velocity, u. Predictions are compared with the experimental findings of Rogers and

Ohlemiller and with the numerical results of Ohlemiller, Bellan, and Rogers. Key results include (i) for a given solid

fuel. Tf depends only on the initial oxygen mass flux, m_, and increases logarithmically with m_; (2) v increases

linearly with m_" and at fixed n_, increasing the initial oxygen mass fraction, Y., increases u: (3) steady smolder

propagation is possible only for Y. >_. ce_(L - T,)/Q, with extinction occurt_g when all of the energy released in

the reaction zone is used to heat the incoming gas. General explicit expressions for Tr and v are presented.

1. INTRODUCTION

Smoldering is defined as combustion without

flame. The primary source of heat release is the
heterogeneous oxidation of the solid [1]. This

process occurs in several steps [2]. Oxygen
diffuses to the surface of the solid where it is

adsorbed. A highly exothermic reaction ensues on

the surface. After the products of combustion

(primarily CO,z, H20, and CO) are desorhed, they

diffuse away from the surface. Many materials can

sustain smoldering combustion. These include

coal, cotton, dusts, paper, polyurethane foams,
thermal insulation materials, and wood. If the

material is sufficiendy permeable, smoldering can

occur well within the host. A self-supporting

exothermic reaction zone can pass through the
substance [1]. Oxygen reaches the reaction zone

Copyright © 1987 by The Combustion Institute

Published by Elsevier Science Publishing Co.. Inc.

52 Vanderbdt Avenue. New York. NY 10017

by convection and diffusion. However, such a

scenario is not valid for all porous materials. Upon
being heated, some substances decompose into a

"'liquid" tar [3], restricting the flow of air and

consequently inhibiting the propagation of such a
smolder wave. Smoldering combustion can be

prevented in some materials by adding sulfur [4,
5].

A schematic of the problem under consideration

and the coordinate system used is shown in Fig. I.

A porous combustible solid with density o,,,
temperature T,, and void volume fraction _ is

contained in a vertical cylinder. A gaseous oxi-

dizer with an oxygen concentration Y_,, a density

0_, and an inlet velocity ui flows upward through
the solid. In the Appendix, buoyancy is shown to

be negligible in the proposed application of a

smoldering combustion experiment for use on the

0010-2180_87 $0350
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Fig. 1. Cocurrent srnolderin 8 combu_on viewed in a frame of

reference moving with the smolder wave.

Space Shuttle. A planar ignition source is used to

initiate smoldering at the top of the solid. The

smolder wave propagates downward opposing the
upward flow of oxidizer. Because the oxidizer and
the fuel enter the reaction zone from the same

direction, this configuration is often referred to as

cocurrent or pre_xed-flame-like. While all of the

oxygen is consumed in the reaction zone, a
considerable amount of solid remains [ 1]. The heat

released in the reaction zone is transferred up-

stream, by conduction and radiation, providing the
energy required to preheat the solid.

Some of the earliest work in the field of

smoldering combustion was conducted by Palmer

[6], who measured the rate of smolder spread in
dust trains and heaps. Recently, several research-

ers have modeled smoldering combustion propa-

gation. Smolder spread in horizontal, cylindrical,

cellulose [7], and polyurethane [8] fuel elements

has been examined. Leisch et al. [9] investigated

smoldering combustion in horizontal dust layers.
Kinbara et al. [10] studied the downward spread of

smoldering through various cellulosic materials.

Muramatsu et al. [11] scrutinized the evaporation-

pyrolysis processes inside a smoldering cigarette.
Kansa et al. [12] considered wood pyrolysis. The

present study is intended to complement the earlier

work of Ohlemiller et al. [13], who developed a

large computer code to investigate unsteady stool-

SUD[P S. DOSANJH ET AL.

TABLE I

Typical Smolder Characteristics [14]

Quantity of Interest Magnitude

Smolder velocity, u 0(0.01 cut/s)

Initial gu velocity, u_ 0(0. I cmds)

Peak temperature. Tr 350-500"C

Smolder wave thickness 2-3 cm

Inverse equivalence ratio, r,q O(0.03)

Solid mass flux. m_ 0(0.0004 g/cm: s)

Gas mass flux. m_ O(0.0001 g/cm: s)
Solid mass fraction, e, O(0.8)

Gas mass fraction, q 0(0.2)

der propagation in flexible polyurethane foams.

Because their method required expensive finite-
element calculations, Ohlemiller et al. concluded

that a primary use of their model was to study the
initiation of smoldering combustion.

A primary goal of this study is to use activation

energy asymptotics to conduct a parametric inves-

tigation of cocurrent smoldering combustion. The

dimensionless equations are very similar to those

governing the propagation of a laminar premixed
flame. A straightforward extension of the pre-

mixed flame analysis presented by Williams [2]

yields an expression for a dimensionless eigen-

value, A, providing a relationship between the

initial oxygen mass flux, m_ = Yo,cbi_s,u, and the
final temperature, Tr. A global energy balance
determines the smolder velocity, u. Both v and T,

are highly dependent on m_. This is due to the
oxygen limited nature of cocurrent smoldering

combustion. That is, all of the incoming oxygen is
nsually consumed and the total energy available is

proportional to mo_. Theoretical predictions are
compared with the experimental findings of Rog-

ers and Ohlemiller [14] and with the calculations
of Oklemiller et al. [13].

2, ANALYSIS

2.1. Governing Equations

Typical values of several key smolder characteris-

tics, including the smolder velocity, u, and the

peak temperature, Tr, are given in Table [. Many
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fuels of interest are very porous, and conse-

quently, conduction is a relatively poor mode of
heat transfer [13]. Thus, radiation heat transfer is

often important despite the relatively low tempera-

tures encountered in smoldering combustion--

peak temperatures are usually between 350 and
500" C [14]. Electron microscope photographs of
two solid fuels, a GM-25 polyurethane foam and a

packed bed of alpha-cellulose, are shown in Figs.

2A and 2B, respectively. Both of these materials

have been used in recent experimental investiga-
tions [3, 7, 8, 14, 16] of smoldering combustion.

While radiation is important in polyurethane

foams, it is approximately negligible in tightly

packed beds of alpha-cellulose. In the following

analysis, radiation heat transfer is incorporated
using a diffusion approximation.

Smoldering is modeled as a finite rate, one-step
reaction,

1 g(Unbumed Solid)+ noO2,

--.n,(Ash) + n_(Gaseous Products) + Qno, (1)

where the n values are stoichiometric coefficients

(grams/gram of unburned solid). Ohlemiller and

Lucca [15] reported that such a model adequately
described the cocurrent smoldering of cellulosic

insulation materials. OMemiller et al. [13] mod-

eled the smoldering combustion of a polyurethane

foam by using two global reactions. However,
since the second reaction (oxidation) was much

faster than the first reaction (pyrolysis), their two-

step reaction mechanism can be well approximated

by Eq. (1). The following asymptotic analysis can

be modified to include a nonoxidative pyrolysis
reaction. Because the amount of energy consumed

by pyrolysis is much smaller than the amount

released in the reaction zone, for steady smolder,
such a reaction will only have a small effect on the

temperature profiles.

Additionally, the solid phase is considered
continuous with a constant void volume fraction.

Cocurrent smoldering is assumed to be one-
dimensional and steady in a frame of reference
fixed on the smolder wave. Fick's law is used to

model the diffusion of oxygen and the quantity

psD is assumed constant. The gas and the solid are
presumed to be in local thermal equilibrium:

Energy transport due to concentration gradients,

energy dissipated by viscosity, work done by body

forces, and the kinetic energy of the gas phase
have been ignored.

In a frame of reference moving with the smolder

wave, m," = (1 - ¢)o,v. Since the smolder
velocity is usually at least an order of magnitude

smaller than the gas phase velocity [13, 14], ms"
---_#su. Thisassumptionallows mo_ tobe treated
as a known quantity. The conservation of mass

requires that n_" (=,,h_ + ms" ) remain constant.
Mass flux fractions are defined by

• R

m{ m s
e, = _--;, ec =_" , (2a,2b)

e. = _, (3)

eo: m----; CYoPsU-$#sD (4)

Symbols are defined in the nomenclature. Equa-

tion.(i) gives

de,,, 1 de° 1 dE_ 1 de s

dx n. dx (1-nD dx (n_,-no)-_"

Species conservation for oxygen requires

(5)

de° no
.... ,", (6)
dx m"

and integrating the conservationof energy gives

dT
m" c_(T- E)-(k_+k,_) ,":-= Qm"(eo,- _o),

ax

(7)

where Eq. (6) has been used to eliminate the

reaction rate from Eq. (7). The effective thermal

conductivity, ker = O/cs + (1 - ,)k,, accounts
for heat transfer due to conduction in both gas and

solid phases. Radiation heat transfer is incorpo-

rated usingatemperature dependent conductivity

[15, 17], k,_ = 16altT3/3. The effective heat

capacity, c_ = e,c, + e#"v is taken as constant.
The reaction rate, r', is assumed to depend on
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Fig.2A.Electronmicn_cc_ephotographof a polyurethaaefoam.

the oxygen mass fraction, the solid fuel present,

and the temperature in an Arrhenius form,

i'" = Z(Yopr)°( Y,p,)bTCe- _/er (s)

where a, b, and c are constants. The conservation

of momentum, which is discussed in the Appen-

dix, and the ideal gas equation of state, P =

psRT, complete the preceding set of equations.
Because pressure variations are small [1], the

transport equations can be solved without consid-

ering the momentum equation. Properties of a

polyurethane foam and an alpha-cellulose packing

are given in Table II.

The following boundary conditions are imposed
on Eqs. (4)-(6): as x --" -_, eo -* e_; as x -*

+ ce, eo "-"0, Yo --*0, and T "-* Tr. Two boundary

conditions are imposed on Eq. (4). The second
boundary condition, which requires that all of the

incoming oxygen be consumed, will determine Tr.

Setting T = Tf, eo = 0, and dT/dx = 0 in Eq. (7)

gives

Qm_ _p_ui

v=(l-_,)p.c_(_- _) (1-_)_. (9)

After solving for Tr, Eq. (9) will be used to
determine u.

2.2. Dimensionless Governing Equations

A characteristic distance, xc = ken/m'c_n, is

chosen by balancing convection and diffusion in
the energy equation, thus eliminating one dimen-

sionless parameter. Typically, ke_ - 0.05 W/m

K, m" - 0.005 kg/m 2 s, and cc_, - I kJ/kg K,

giving x¢ - 0.01 m. Because the definition of x_
does not account for radiation, x_ is somewhat
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Fig. 2B. Eiecum microscopephotographof alpha-cellulose.

TABLE !1

Typical Properties of a Polyurethane Foam and a Packed Bed
of Alpha-Cellulose

Polyurethane s Alpha-Cellulose _'

0.97 0.82
p, [kg/m 3] 1150 620

¢, [kJ/(kg K)I 1.7 0.84
k_ [W/m K] 0.047 0.050
k,.(T) (W/rn K] 0.005 -0
E [kJ/mol] 155 (140)' [80
g [U/kg] 12,300 (7,600) 12,500

Z IO_ mJ/k41s 3 x lOs m"S/kg °-s Ko's s
a 1 0.5
b 1 1
c 0 0.5

n_p/no 3.7 1.4

° Properties givea in ReL [13] are shown in parentheses
whenever they are differem from the value listed above.

From Ref$. [7, 16].
Shown in the ptrenthe_ is the activation energy for the

first reaction in the two-su_p model in Ref. [13].

smaller than the smolder wave thickness given in

Table I. Since all of the oxygen is consumed, the

oxygen mass flux and the oxygen mass fraction are

normalized by their initial values (that is. fo = %/

e_ and f'o = YJ Y_)- A dimensionless tempera-

ture is defined by f = (T- _)/Tc, where T_ is a

characteristictemperature. Setting T¢ = 7",makes

Tan O(1) quantity--see Table I.

The dimensionless parameters governing cocur-

rent smoldering are listed in Table HI. Parameter

ranges given in Table Ill were estimated from the

properties tabulated in Table !1. Note that the

asymptotic analysis is only valid when the

Zeldovich number, 8 = 8' 7"f/(l + Tr)-'. is large

(8 > 10) [2], roughly corresponding to _' > 50.

The dimensionless radiation conductivity..'YR, is

artificially low because it is based on 7",rather than

Tf. A critical value of the dimensionless heat

release, De, below which solutions cease to exist.
will be identified.

Dividing Eqs. (4) and (6) by Eq. (7) eliminates

the spatial coordinate, X. In terms of the new



136 SUDIP S. DOSANJH ET AL.

Table HI

DimensionlessParametersGoverningForced Cocurn_ntSmolderingCombustion (in Additionto the Following Parameters,r,,q.a.
/7, and c Mtm Be Specified)

D== OY=
c,_T,

k..r,
L_--_

16ol,T,)
3k,_

E

= noZ(RK_r)i*'D"_E_''*zl'(l+a)
m=_(EO) _''(¢D,)"

Dimensionless measure of the energy released in

the nutctim Zone (varies from 0 to 40)

Modified Lewis number (varies fr_n 0.05 to in-

fruity)

Dimensionless radiation conductivity (usually less

than 0.1)

Measures the amonm of gas produced in the reac-

don zone (varies between 0. l and t .0)

Dimensionless activation energy (varies between

50 and 70)

Dimensionless preexponential factor (usually lies

between lOs and 10 to)

coordinate, 7", the governing equations are

T- Tf(t - _o) d_o
= - = (10)

1 +NR(I + 7.)3 dT.

and

T- 7.,(1 -¢o) d_'o

Le g[l +NR(I + 7.)3] tiT.

= [1+ P,(t - ¢o)]_o- _. (x])

The dimensionless reaction rate is given by

= A fo'[1 - r.q(l - ¢.)]b(f+ l)e-"

× e_p (_-;-_)), o2)

where

LeTI'(-_+a) exp - • (13)

In terms of 7., the boundary conditions are eo "-' 1
as 7.-. 0(.e -- -=); ¢o-. 0and _'o--, 0as 7'---.
7._(X -, +o=). After solving Eqs. (I0) and (11),

the spatial coordinate, .e(7.), is determined by

1 +Nm(l + 7")3 dT"
=2. (14)

7.-7._(I-¢o) da

Equation (9) gives a relationshipbetween a

dimensionlesssmoldervelocity,=3= u/u=,and the

dimensionlessfinaltemperature,7._= (Tr - 7",)/

T:

I I
0=---_ (15)

7',/:>,"

A characteristic smolder velocity, v¢ = Om:./(I

- _)a=ceeT_, is chosen by balancing the energy
released in the reaction zone and the energy

required to preheat the solid, thus eliminating one

parameter from the above equation.

3. ACTIVATION ENERGY ASYMPTOTICS

Typical values of the Zeldovich number, ;3.

encountered in smoldering combustion are fairly

large. From the argument of the exponential in Eq.

(12), the reaction rate is significant only when I -
:J-_ < 7./7.f < I, corresponding to the (inner)

Region IIin Fig. I. The outerregionconsistsof
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the point T ffi _, Region I in Fig. 1, and Region
m in Fig. 1,0 < T/Tf < 1 - /3-1. la the outer

regions, the reaction rate is negligible and diffu-
sion is balanced by convection. Because the inner

region iS very thin, diffusion dominates convec-

tion, and consequently, the source terms in the

governing equations are balanced by diffusion.
In Region HI, _o - Oand F.,q. (lO) yields _0 = 1.

Substituting _o = 1 into Eq. (1 l) and integrating

once gives

_11Po=l-ex p -Lc _'f Sr 7

x [I+NR(I+t) 3] . (loD

Note that the integral in the above equation
diverges at T -, 0. Therefore, f'. --, 1 as T --, 0.

A stretched variable is defined,/i =/3(1 - T/I"r).

Expanding _'o and _0 in terms of 1/_ gives _'o =

(I//5)_'01 + 0(I/_ 2) and _o = _0o + 0(I/_,

respectively. Matching conditions are: _0o .., I as
_-. +0,; _.o --. 0 and f',_ -. 0 as _ --. O.

In the inner region, Eqs. (10)--(13) yield (to

leading order)

_00 d_O

l +NR(I + Tf)_ d_

A

ffi_ i÷"---_ [ _'011"[1 -rq(l--ioO)]be -_

and

d_'
_=Lc Tdl +Nm(l +/'0_].
d_

Integrating Eq. (18), substituting the resulting
expr-w,sion into Eq. (17), applying the matching

conditions, and integrating once yield

a_-

t3'+°f(b, r.0
Lc* Tf*[l +N_(I + Tf)3l_*Or(l +a)'

where

i, t dt
f(b, r_)= o [l-rm(l-t)l* "

d
u

/

i

0-$ 1.11

lll/llllll l_JIVll.llgl ItlTlO, r.i

Fig. 3. The function f(b, r, O plotted versus the

equivalence ratio, r._, for various values of b.

inverse

Because the oxygen consumption of a typical

smolder wave is only a few percent of that

required for stoichiometric burning, the inverse

equivalence ratio, r_q, is fairly small [ 13, 151. As

shown in Fig. 3,f(b, re,) "" l/2in the limit r_q --.
O.

4. GENERAL SOLUTION

4.1. Fieldls

Because all of the incoming oxygen is consumed in

the reaction zone, the total heat release is propor-

tional to the initial oxygen mass flux, mo_. Both the

smolder velocity, _, and the final temperature, Tr,

(17) are highly dependent on m_. Since T_ appears in

Eqs. (10)-(12), (14), varying mo_ affects the
dimensionless oxygen mass fraction, ?o(T), the
dimensionless oxygen mass flux, _.(T), and the

dimensionless distance, .g(/_). These profiles de-

(18) pendonLe, NR, re_,l_,,.Tt, a,b, andc. Sincer_i s

usually small, the various profiles are weakly

dependent on r,_ and b. Results presented in this

section are for the limit r._ -- O, and consequently,
the solutio_ ate independent of both r,_ and b.

When _0 is plotted as a function of normalized

temperature, TI_'_, the resulting curves depend on
(19) only two parameters, the Zeidovich number/3 =

/3' _/(1 + _'f)2 and the constant a. AS evidenced

by Fig. 4, the incoming oxygen is consumed in a

narrower region as/3 is increased. Also plotted in

(20) Fig. 4 is _0 versus _/_'f, parameterized in Le. for
Na = 0.1, _. = 10 _°,a = l, andc= O. The
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1.0

l|
i|

',6-- .Z.

'|t
-'--.NI

i

0.5 1.0

NORMALIZEO TEMPERATURE. T_t

Fig. 4. Dimensionless oxygen mass fractioo, f'o = Yo/Yo,,

versusnormalizedtemperature,f/_'. withNt = 0.1, B' =
00, ._.= 10to,a = 1. ¢ = 0, and rq = 0. Also plotted is the
dimensionlessoxygen mass flux. e-e= (deo,, versus T/_'f. for a
= I and r,q = 0. The dimensionless parametersare definedin
Table II.

modified Lewis number, Le, measures the thermal

thickness relative to oxygen diffusion thickness.
The preceding analysis is valid when the diffusion

thickness is much larger than the thickness of the

reaction zone, roughly corresponding to Le ,4 B.

When Le ~ B, the dimensionless oxygen mass
fraction is O(1) in the reaction zone and smolder-

ing is kineticaUy controlled [18]. For polyure-

thane, with u, = 0.2 ctWs and P. = 1 atm, the

criterion for diffusion controlled smoldering is Y_

0.02.For a packed bed of alpha-cellulose,the

criterionisY,__ 0.01.

Afterascertainingthe dependence of _oon _',

F.,q.(14)can be used todetermine7"asa function

ofdimensionlessdistance,_. Typicaltemperature

profiles,parameterizedin NR and B', for A =

109,a = I, andc = 0, are shown in Fig. 5.

Raisingthe dimensionlessradiationconductivity,

Nit,decreasesthefinaltemperatureand increases
the thermalthicknessof smolder zone. On the

other hand, increasingB leadsto greaterfinal

temperatures.Note that_o07)and _(.e)can be

constructedby combining Figs.4 and 5. Results

from such a calculationare shown inFig.6.

4.2. Final Temperature and Smolder Velocity

A key result of this analysis is Tf(NR, _', A, a, c).

In the limit r,q -* 0, Eqs. (19) and (20) give

AtI +NR(1 + ff)3l'*'r(l + Tf) "÷c'z

X e-a'/tt÷rO= 1 . (21)
2

A plot of J"f = (Tr - Ti)/Ti versus X parameter-

ized in the dimensionless activation energy, B',

and the dimensionless radiation conductivity, AIR,

for a = 1 and c = O, is shown in Fig. 7. As the

I i ! l

g /

i
o

•4 -3 -2 -1 0 1

DIMENSIONLJESI; DISTANCE. • _" _

Fig. 5. Dimensionless temperature. T = (T - T,)tT,. versus dimensionless distance. _f =

xm'G_/k_, with _. = tO t°, a'= 1, c = 0, and r,_ ,, 0.
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-3 -2 -1 0
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DIIdI[1MItOMLIII_ oIIrrANCE, | = = m
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Fig.6. Dimensionlessvariables, f'o._'o.and _'. and thedimensionlessreactionrate,_. versus
dimensionlessdistance.,f. with B" = 00, A = IO=°,Le = 0.5. N, = O.l.r,_ = O,a = I,and
ca0.
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2

=-_

o=
|;
-_=| _,,.=,
a= --I_=U

=
i

_01 0.1 1.0

DI MI[NIIONU[Im

ImlE-EXPONIENYlAL. X = SO"la

Fig. 7. Dimensioaless final temperature,Tf = (Tr - T3/T,
versus¢h¢dimensienlesspreexpoeentbdfactor,_, witha = 1,
c = 0, andrq = 0.

reaction rate is increased, by either raising the

preexponential, _., or lowering the activation

energy, _', 7'f decreases and the smolder velocity,
6, which is inversely proportional to 1"f, increases.

That is, the material bums faster when the reaction

rate is higher.

For a given fuel, 7"f decreases logarithmically
with ,_. Therefore, Tf increases logarithmically

with the initial oxygen mass flux, m=_, as shown in

Fig. 8. Also indicated are measurements by

Rogers and Ohlemiller [14] and calculations by

IOO

4OO

100

eL

................ -;.,-

i i i i , , [_
°1 o.2 o.3 o._o.s t.o

OXYGIINMAImFLUX._'a (_o'4GVc=_*)

Fig. 8. Downstreamtemperaturesin polyurethanepredicted
by thepresent=malyti¢model, for the propertieslistedm Table
I (--) _ those given by Ohlemiller et al (---). measured by
Rogers aad Ohlemiller, and calculated by Ohlemdler et al.
(O). McLsu_met_ are for the following conditions: u, ,=
0.04 cm/s. Y= = 0.23 (+), and ]1== 0.44 (/_): -, = 0.15
curds.Y== 0.44( x ). ALsoshown in the figurearepredictions
forcellulo_ (-).

Ohlemiller et al. [13] for polyurethane. Ohlemiller

et al. attributed the discrepancy between their

predictions and experiments to uncertainty in the
base parameter set (see Table U). When their

parameters are used in this model, as shown by the
dot-dash line in Fig. 8, predicted values of Tf are
close to those calculated by Ohlemiller et al.

Results from this study indicate that the parame-
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ters in Table II are a better choice, for they give
much closer agreement between predictions (solid
line) and measurements. The dashed line in Fig. 8
gives the final temperature for alpha-cellulose.

As shown in Eq. (15), the dimensionless smol-
der velocity depends only on Dc and _'f. The
dimensionless parameter, De, which measures the
total energy released in the reaction zone relative
to the amount of energy required to raise the
temperatureofthegasfrom T_toTr, containsthe
experimentallyobserveddependenceofv on Y=.
Fora givenfueland a fixedinitialoxygenmass

flux,mo_, increasingY= raisesDe, leadingto
highersmoldervelocities.ThisdependenceofOon

Dc isfairlyweak exceptnearextinction.For Y=
near0.23,Dc ison theorderof I0andtherefore,

as a first approximation, 6 - l/7"r. Because Tf

varies slowly with mo_, u is approximately propor-
tional to m_ (recall that uc - rh.o_). Figure 9
illustrates the dependence of 0 on A for polyure-
thane. Overall, there is good agreement between
the smolder velocities predicted by this model and
those measured by Rogers and Ohlemiller [14].

Extinction occurs when v = 0, corresponding to
Tf -- De. That is, extinction occurs when all of the

energy released is used to heat the incoming gas.
Steady smoldering combustion is possible only
when Y_ >- c_(Tr - T.,)/Q. For polyurethane,

with ui= 0.2cm/sand P, = 1 arm, this criterion

requiresthatY_ _ 0.05.Notethatthepresenceof
heatlossesfromthesidesofthecylinderwillraise

this critical value of Y=.

5. CONCLUSIONS

An analytical model of cocurrent (premixed-
flame-like) smoldering combustion has been de-

veloped. Smoldering was assumed to be one-
dimensionaland steadyina frameof reference
fixedonthesmolderfront.Radiationheattransfer

was incorporatedusinga diffusionapproximation

and smolderingwas modeledusinga one-step
reactionmechanism.

Key resultsinclude(I)foragivenfuel,thefinal

temperaturedependsonlyon theinitialoxygen

mass flux,m:, increasinglogarithmicallywith

rn:; (2) the smolder velocity,v, is linearly
dependenton m: and atfixedm:, increaseswith

SUDIP S. DOSANJH ET AL.

1"4l

i O.4

DIMENSIONLESS
I_qE-EXPONENTIAL. A • I0 "111

1.0

Fig.9. Dimensionless smolder velocity._ + liD. versusthe

dimensionless preexponential.A. for polyurethane. Smolder

velocitiespredictedby the presentanalyticmodel (--).mea-

surtd by Rogers and Ohlemiller (A). and calculated by

Ohlemiller etal.(+ ) are shown.

initial oxygen mass fraction, Y_: and (3) steady
smolder propagation is possible only for Y= >
e_(Tr - T3/Q, with extinction occurring when
all of the energy released in the reaction zone is
used to heat the incoming gas.

The preceding analysis can be modified to allow
for several second-order effects. Heat losses from

the sides of the cylinder will affect the extinction
criterion, increasing the critical value of Yo, below
which steadysolutionsceaseto exist.When

propertiesare allowed to vary, the equations
determining v and Tr will still be valid, with the
properties appearing in these equations evaluated
at Tr [2]. As discussed earlier, a nonoxidative
pyrolysis reaction can also be included in the
analysis. However, for steady smolder, the pres-
ence of such a reaction will only have a small
effect on the temperature profiles.

APPENDIX: IN_UENCE OF BUOYANCY

Because the temperature field and hence the
buoyancy varies as the smolder wave spreads, u,
may not be known a priori. The quasi-steady
conservation of momentum for this system is

dP
cb-_- - _adu+ _)(_)r - #=)g- (22)
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IntegratingF.q.(22)yields

I' I.a,u dx:_ AP+cb *
• -!. .t-L g(PP--Pg) dx,

(23)

where h is the length of Region I in Fig. 1, L is the
totallengthofRegionsI-III,and AP = Pi - Pfis

the pressuredrop across the solid,excluding

changes in hydrostaticpressure.While the flow

resistance,ad, islower inthechat layer,the gas

velocity,u,ishigher.Therefore,itisassumed that

thequantitya_u remainsapproximatelyconstantat

aoui.A stepchange inas from as,toa# occursatx

= 0. The initialvelocityisthenapproximatedas

Ap _bgp_kf'f
ui = --'l . (24)

_adL /_adL(1 + Tr)

Buoyancy can be neglectedwhen gDr,R/AP • (L

+ Tf)/Tv At STP, ,og~ I kg/m 3and Tf - I,so

thatatsea level,with g = 9.8 rn/s2,AP/h • 5

Pa/m sufficeswhileinorbit;withg - I0-_m/s 2,

AP/R • 5 x 10-4 Pa/rnwillsuffice.On the

otherhand,forpolyurethane,buoyancy isnegligi-

ble ifthe forcedui >, 4 x I0-' m/s atsea level

and ifui • 4 x 10-s m/s inorbit.When Ap/

g#s,h• Td(l + Tf),ui- gos,-Sincethesmolder

velocityisproportionaltotheoxygen mass flux,o

- Yo,ai,u_- Y_&#_.Thisresultagrees with the
experimental finding [16] that u is proportional to

p2 for buoyancy driven systems.

This work was supported by the National

Aeronautics and Space Administration Lewis
Research Center under Grant No. NAG-3-443.

NOMENCLATURE

as Darcy coefficient

c heat capacity

cea effective heat capacity, e,c, + escs
D mass diffusivity of oxygen in air

D: dimensionlessenergy releaseper mass of
02, QYJc_rT.,

g gravitationalacceleration

h distance over which buoyancy acts

k,ff conductivity due to conduction, cbks + (1 -

O)k,

141

k_ conductivity due to radiation, 16¢1,TS/3

/, radiation path length
L height of the solid fuel

Le modified Lew_s number (see Table lid
° mass flux

Art dimensionless radiation conductivity, (see
Table Ill)

n - stoichiometric coefficients

P pressure

Pt dimensionless gas production parameter (see
Table

Q energy rel_ per mass of 02.consumed

_" reactionrate

r_ inverseequivalenceratio,_o,/noe,_

T temperature

u mass averagedvelocityof thegas phase

smoldervelocity

Y mass fraction

x spatialcoordinate

Z preexponential factor ifi-the reaction rate

Zeldovich number, E ( Tf - T3/ R T_

B' dimensionless activation energy, E/RT,
A dimensionless eigenvalue

dimensionlesspreexponendal (see Table HI)

e mass flux fraction

dynamic viscosity

// stretched coordinate,_(1 - T/Tf)

# density
or Stephan-Boltzmann constant

void volume/total volume

Subscripts

a ash

c characteristic

f final value (x = + oo)

g gas phase

gp gaseous products
i initial value (x = -oD)

o oxygen
s solidphase
us unburned solid
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ABSTRACT NOHEHCLATU_

A model of smoldering combustion propagation a d
throush very porous solid fuels is presented. Bere c

noldering is initiated at the botton of a long, Dco

radially infinite fuel bed, so that the smolder rave Dcp
propagates upvards, in the same direction u the forced h

flov of oxidizer. Because the solid fuel and the k

gaseous oxidizer enter the reaction zone fron opposite kef f

directions, this configuration is referred to u kra d

countercurrent, diffusion-flame-like or reverse. The

proposed application is an experiment for use on the _r
Space Shuttle. Due to the microgravity environment, it L

• is assumed that the propagation of the smolder vave is

one-dimenslonal. Radiation heat transfer is Le
incorporated using a diffusion approxlastlon and i"

smoldering is represented utilizlng a tvo-step Hi
mechanism consisting of a pyrolysis reaction folloved NR
by a char Oxidation reaction. An infinite reaction

rate approxlution is used to soda1 the oxidation P

reaction zone and it is assuNd pyrolysis occurs at a 0

knovn temperature, T v. Because the tvo reaction fronts Qg

love at different velocities, countercurrant smolder 0o
propagation is unsteady. Tvo cases are consideredx

(1) no ash residue; and (2) an ash layer building belov sa
the smolder vavm. The residual ash serves as

_ insulation and its presence leads to higher peak Sc

; teel_ratures. Explicit expressions are derived _or thechar oxidation velocity, v, the anxlmm teeperature, T

T a, and the pyrolysis front velocity, v n. Key results u

t include: (1) in the absence of radial heat losses, Vp v

approaches a constant value vhlch is different from VV|

_ (2A) for the no residual ash case, in limit of lonl x

time (t-m), T e is determined by balancing the enerl_ Y

released in the oxldati0n region vlth the enerl7 ¢
required to preheat the gas and the energy lost u
radiation| (2B) vhen an ash layer builds belov the o

smolder vave, radiation losses are negllglble in the e

lisle t--., and T u is higher than in the no ash case|
• and (3) self-sustained countercurrent smoldering

combustion is not possible vhen the enerr/ converted by

the gas phase is insufficient to drive the pyrolysls
front.

Darcy coefficient

heat capacity

dinensionless enerr/ release, QYoilcgTi

dimensionless pyrolysis energy, 0p/caT i
ash height

thermal conductivity

conductivity due to conduction, 6k..(l-_)k s
conductivity due to radiation, 16e_rT_13

t

ratio of thermal conductivities, kg/ke£ f
radiation heat length
distance betveen the oxidation zone and the

pyrolysis front
modified Levis number

mass flux

molecular veight of species i

dimensionless radiation conductivity,

16e£rTl/3kef f

pressure

energy released per mass of 02 consumed
dimensionless external heat flux, qelQYoim_i

energy consumed per gran of unburnt solid -

dimensionless radiation losses, c_IQYoli_i
dimensionless stoichiometric coefficient, -

_aNal_usHus
dimensionless stoichiometric coefficient,

_cMc/_us_us

temperature
mass averaged velocity of the gas phase

smolder velocity

dimensionless smolder veloclty, _sHusYoiCsl_oHoCg
spatial coordinate
mass fraction

emissivity

stolchloeetrlc coefficient

density

Stephan-Boltzasnn constant

ratio of gas to solid response times,

o_icx/(1-_) Omits
v_id-voluas / total volume
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g gas phase

gp gaseous products
i initial value (x---)

o oxygen
s solid phase

us unburnt solid

1. ZNTRODUCTION

Smoldering, vhich is defined as combustion vtthoul

flm, can occur in many materials, including coal

[1,2J, cotton [3,4J, paper [$-7], polyurethane foams
[8], rood [9rlO), thermal insulation materials jig| ant

various dusts [12,1]]. If the host material ts

sufficiently permeable, 8 self-supporting exothermic
reaction zone can pass through the substance [14].

Oxygen reaches the reaction zone by convection and

diffusion. Hoverer, some materials decompose into a

"liquid" tar [1;1 upon being heated, restricting the
flov of sir and inhibiting the propqation of a smolder

rave through the material. Smoldering combustl_ can

be prevented in some materials by adding sulfur |15|o
Schematics of the problems under consideration are

presented in Pigs. 1A and lB. A gaseous oxidiser, vith

an oxygen concentration, ¥ol, and an inlet velocity,

ul, flora upvard through a porous combustible aedi_,a
vhtch has a void volume fraction, 6. The solid and gas

fractions begin rich densities, Psi and sgi,

respectively. At t.0, both the solid and-the gas are

at a uniEors temperature, T i, Smoldering iS Initiated
at the bottom of the material by applying an external

heat flux, q;, for O<t<t e, The smolder rave propagates

upvards, in _he same direction as the forced flov of
oxidizer. In a frame of reference moving vlth the

smolder zone, the solid and the oxidizer enter the

reaction re|ion from opposite directions.

Consequently, this configuration is referred to as
countercurrent or diffusion-flame-like. It is also

called forvard smolder since the reaction zone moves In

the oxidizer ,1my direction.

REGION h UNBURNT SOLID

l vp PYROLYSIS FRONT. _

l REGION I1: CHAR

CHAR OXIDATION FRONT
, | | em

FIG IA:

REGION Ith AIR

l u_ (AIR FLOW VELOCITY)

Schematic of countercurrent smoldering

for Case I (no residual ash).

t
L

REGION I: UNBURNT SOLID

t vs PYROLYSIS FRONT

REGION II: CHAR

vCHAR OXIDATION FRONT
i ,i i | e |

h REGION IJh RESIDUAL ASH

,l
e i ill ii i e i it i|

REGION IV: AIR

T u, (AIR FLOW VELOCITY)

PIG. IB: Schematic of countercurrtnt stmldartng for
Case l£ (an ash layer building belov the smolder rave).

Relatively little attention has b_en giv_ to

smoldering combustion in the countercucrent

conflgura_ion [14|. Ohlutller and lucca [16]

conducted an expertmontal investigation usini
cellulosic insulation as a fuel. In I related study,

Sumeertteld et al [17] pres_mted a one-dlmsnslonal

numerical model of smolder spread in I ciserette during
steady drav. Tvo reactions vere Included, pyrolysis

and char oxidation. Because the vrapplng paper burns

back, a significant amount of sir bypasses the hottest

part of the char oxidation region. Consequently,

cigarette smolder is more complicated than the

countercurrant smoldering scenarios depicted _n Pigs,

1A and lB. Vtnslov [18] investigated countercurrent

propagation vithin the context of coal gasification In

the packed bed uttlizinl an unsteady, one-dimmsional

model. Different gas and solid temperatures were used

and concentrations of eight ch_lc81 species, tvo forms

of velar (surface and interior), coal and char vere

calculated. Duo to the complexity of thsse solutiorum,
it Is difficult to determine vhich moth, lima dominate

the movement of the mlx reaction fronts,
A model of unstmsdy countercurrext smoldering

combustion propagation is presented in this study,

Smoldering coebustion Is represented vtth a tvo-step
reaction mechaltlsm consisting of I char oatdstlcm

reaction and 8 pyrolysis reaction. An infinite
reaction rats approximation is used to model the

oxidation reaction zone and it is assumed pyrolysis

occurs at a knovn temperature, T o. Secaune the t_m
reaction fronts move at dlfferen_ velocities,

countercurrent smolder propa_atlon is unsteady. Two

cases are considered= no ash residue (see Pig. IA),
_aNa-O, and art ash layer buildlng belov the smolder

rave (see Pig. IB), VaHa_O. The residual uh serves u
insulation, leadini to higher peak temperatures. The
range of validity of the solutlona is identified and

explicit expressions are derived, in the limit of long
time, for the char oxidation velocity, v, the pyrolysis

front velocity, Vp, and the maximum temperature, T m.
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5. _LTs=s

2.1 Assumptions
The scenario depicted in Fig. 1 is not a realistic

representation of the countercurrent smoldering
¢o•bustion of all solid fuels. For soma solids vill
collapse dovnvards as the smolder rave propagates. In
this study, it is assumed that the solid remains
stationary in a frame of reference fixed in the
laboratory. If the fuel consists of small, loosely
packed, solid partlcl•s, this assumption is only valid
in a alcrogravlty environment. Smoldering combustion
is represented by • eva-step reaction mechanism.

_s(Unburnt Solid) + Qp_usHus+_eChar

and +_gpl(Gas Products) (1)

vcChar ÷ VoO2(Cas Products) + vaAsh . O_oHo (2)

vhere Op is the energy required to pyrolyse one gram of
unburnt solid and 0 is the energy released per gram of
02 consumed. Char oxidation is modeled using an
infinite reaction rate approximation. It is moused
that the pyrolysis reaction occurs at a knovn

te•perature, Tp. This is a reasonable approximation
for many solids of interest [19-21]. Par alpha-
cellulose, Tv-300oc [19]. Alternatively, pyrolysis can
be modeled u_ing Arrhenius-typa kinetics [17,18,20].
Such an approach leads to numarical calculations and
requires the specification of kinetic constants vhose
values are sonetLaes ambilruou• [19].

The char oxidation zone saves at a constant speed,
v, vhich is determined by the rate at vhtch oxygen
reaches the reaction region, vhile the pyrolysis front
saves at a veloclty, Vp, vhlch is several times larger
than v. Because the pyrolysis reaction Is endothermic
[14], motion of the pyrolysls front is highly dependent
on heat transfer from the oxidation zone, vhere the
energy required to sustain smoldering is released.
Energy is transferred to the pyrolysis zone by
conduction, radiation and gas phase convection.
Typical values of several smolder characteristics,
including the maxisua tesperature, Tm_ the oxidation
velocity, v, and the pyrolysis speed, Vp, are given in
Table I.

TABL_ !
Order of magnitude estlaates for several smolder
characteristics.

Quantity of Interest Magnitude a

forced gas velocity, u i
oxidation velocity, v

pyrolysl• front velocity, Vp
maximum temperature, To

(1-5) X 10-_ a/set
(1-3) X lO-a a/set
(5-15) X 10 -a a/set
800-900OK

a. Heasuremonts by Ohlesiller and Lucca [16].

Because the solid fuel and the gaseous oxidizer
enter the oxidation zone from opposite directions, all
of the char is consumed in accordance vith Eq.(2)
before the oxidation zone saves forvard. Therefore,
the oxidation velocity, v, is proportional the the
initial oxgen mass flux, vith the proportionality
constant determined by stoichiometric considerations
[14,16]. Because v is several orders of magnitude
smaller than the gas velocity, ui, the oxygen mass flux
(in a frame of reference •ovlng vith the oxidation
zone) is approximately, Yol6Oltu i [16J. Thus,

V - VusHus T°i°|iUl
yaH-----_- (1.d)Pst (3)

Typically, Yoi-0=23, ui-O.OO5 o/s, Ogl-1 kg/m 3, and
(l-d)P.i'-40 k4/s J, resultlnZ in oxidation velocities on
the order of I0 -5 a/s. For the same conditions,
smolder velocities encountered fn cocurrant smoldering
are sore than 50 times larger [16]. In a frame of
reference saving vith the oxidation zone, the gas phase
mass flux, _, Is an order of magnitude larger than the

emsolid phase Eass flux, a s . Setting Tog 0.23 and
representing oxidation vlth the reaction, C÷O2, Iq. (3)
yields _Ii_-.0.08. Heglecttng terma involving ;_
considerabl_ simplifies the governin4t equations. Also,
since the solid density based on total volume,

(1-_)%1, is much greater than d.ogt, the energy stored
in the gas phase is negligible vhan compared vith that
stored in the solid phase [8,17].

Additionally, the solid phase is usused continuous

vith • constant void volume fraction. The prop4q[ation
of the smolder rave is approximately one-dimanaional.
Pick's Lay is used to model the diffusion of oxygen.
Radiation heat transfer is incorporated utilizing the
diffusion limit. The gas and the solid at• presumad to
be in local thermal equilibrium, r.ner W transport due
to concentration gradients, energy dissipated by
viscosity, vork done by body forces and the kinetic
enerirY of the gas phase have been ignored. The
quantity, 0KD, is taken to be constant. This is a
reasonable issuaptlon because the mass diffusivity of
oxygen in the air, D, increases vith temperature and
decreases vlth pressure [22]. It is also assumed that
properties, such as the gas phase therul conductivity,

kg, the solid phase thermal conductivity, ks, the gas
specific heat, cg, and the solid specific heat, ca,
remain constant.

2.2 CASE I: NO RESIDUAL ASH

2.2.1 Governlng Equations
After the initiation of smoldering, the coordinate

system moves vith the char oxidation region. For x>O
(Regions I and II in Fig. 1A), the conservation of
energy requires

rr _ ;rr(l-d)OsCs _t ÷ m CB _ . _x [keff + krad] _-_,(4)

vhere the effective thermal conductivity, k_ff=dk e +
(i-6)k s, accounts for heat transfer due to conducllon
in both phases. Radiation heat transfer is
incorporated using the temperature dependent
conductivity, krad.16_rT3/3 , vhere r is the radiation
path length. For x<O (Region 111 in Wig. IA),

_T ." _T _2T

pgCg _'T +•gcg _-; - kg _ . (5)

Since all of the oxygen is consumed, ¥o.0 for x>O. For
x<O, conservation of species for oxygen yields

_Yo _Y _2y

_x 2 '

Conservation of gas mass gives

_P - 0 (7)it • (_-l).(x>l_+ _x '
vhere H(x) is the Heaviside function, vhich vanishes
for x<O and is equal to 1 for x>O. Noting that all of
the incoming solid is consumed in the oxidation zone,
Eq. (I) yields
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L0 , for x<0
Because the pressure changes by only t emall +mount for

these very porous systems [14], the ideal gas lay gives

p_T-P , thus coapletin8 the preceding set of
,_uati_ns.

1'he folioving boundary conditiona..,are ...._eposed on
Ens (4-7): as x._.e, T-leVi, Y+Yot and I_'_lgi; as x++-,

d_/dx_O.Thetemperature_sc_,tinunus'acrossboth
interfaces. Because _s<<ig, kg is approximately
continuous across both interfaces. Xt is assu,.ed that

smoldering begins vhen the temperature of the x,.O ....

interface reaches a critical value, Ttg>Tp>T i.
Bovever, only an approximate value for Tig I$ needed

since the solutions are independent of the initial

conditions as t+e. Conservation of energy at the x.O

Interface gives

2T _T

4 4 )Yo 1

+ C o(TI-T l) • OOgO "_-_'Ix.O" H(Ta-TIg)

°_

- qe Here-t) ' (9)

vhere Tm is the temperature at x=O. Thus, the imximun-

temperature, T e, is determined by balancing the energy

transported dovnstrea,.; by conduction and radiation,
and the energy conducted upstream, radiation heat
losses from the x.O interface, the energy released in

the oxidation zone and the external heat flux. Motion

of the pyrolysis front is calculated by equating the

energy ccnsume<l by pyrolysis and the net ehergy
transported to the pyrolysis anne, giving

. + 16 • T3.
_eff _" _r PJ _II];IT tIT

vhere vp,dLldt+v and L is the distance betveen the tvo
reaction regions. Initially, both the temperature the

the oxygen concentratlon are uniform. That is,

T(x,O),T i and Yo(x,O)-Yol. After smoldering Is
initiated, ¥o(O,t)-O.

2.2.2 Dleenslonless Governln_ Equatlons
A d_mensionless temperature is defined by T=(T-

T!)/T c. Setting Tc-T i makes TOE order one and
ell,.inates the parameter, Tc/T i, vhich arises from the
nonlinear _eras in the governing equations. The oxygen

•.ass fractio_, YO, the gas density, sg, and the gas

mass flux, ig, are norsallzed by their initial values.
k characteristic distance, xc-keff/i_iCg are chosen by

balancing _erme In _l. (4). pplcaIly, ui_-O.OOSm/sec,
ogi-1 kg/e , (l-_)psi-+O kgla , cs-c_-I kJ/kg K, and
keff-O.05 _/e K, giving Xc-_.01 m an_'tc-80 sac. Thus,

the ratio, Xcltc.'O.Ol3 cm/sec, is of the same order as

v o (see Table l). This is to be expected because Vp is
d_teralned by heat transfer consldetations and both x c

and t cvere chosen to _ke ter_ in the energy equation
of order one.

For _>0, conservation of energy requires

-- -- _ [i +. (l+_)3l _= -= , (II)
9s a_ * ag ax ax r ax

and for x<O,

-- "= - (12)
_;g a; +ag ax

S.ince all of the OxTgen is consuled, _o-O for _00. For

x<O, conservation of species for oxTgen yields

+;' ,T +"' ,T" W '
Conservation of gas mass requires

• [1-(1-_)S(x)] _. + _. - o (z4)
at ax

Equation (8) yields

_ . _ - (l-a c) B (L-_) , for x>O
_s LO, for x<O (1_)

In dimensionless form, the ideal gas equation of state

is OK(I+T)=I. The dimensionless smolder velocity,
V=Vtc/X c, equals after the onset of seolderlng and zero
be forehand.

The follovtng boundary con..ditlons are imposed on

Eqs. (11-14)" as x+-,., T-d), ¥o-,1 and ;g-,l; as x+-te,.peratur,andthe,... flu/are"
continuous across the interfaces. Conservation of

energy across the "_=0 interface gives

°co ;.o+ " %0 :_ ;.o-

1 ++o[
0R[(I+'T')+-ll + _ ;xll.o- "(÷,.-÷ig)

- OgH(te-t) , " " (16)

vhere T_, is the temperature at _o0. _The _temperature of

the pyrolysis zone is held fixed, T(L,t)=Tp, and the
motion of this front Is determined by

- d_
V ,_ _ ¢ V

P dt

• _ [I÷Nlt(I+T)3] - .cp ;._+ _ ;.Z- (17)

Xnittally,.._(x,O).O and Yo(X,0)-l. After $,.oldering is

initiated Yo(O, t),,O.
The diaenslonles para,,eters appearing in the

preceding equations and typical values of these

parameters, estimated from properties provided in refs.

[B,16,23-2_], are given in Table II. The quantity, _,

represents the ratio of the gas phase response time to

the solid phase response ttme and is klvays less than
0.04 for the fuels of interest. As discussed in the

folloving section, this fact leads to considerable

simplification in the governing equations because

solutions in Region Ill in Fig. lA are steady vhen • is
small.

TABL_ II

Dimensionless para,.eters governinB forced

countercurrent s,.olderlng combustion. In addition to

the folloving parameters, the void voluee fraction, 6,

the irradiation else, t e, the ignition temperature,

Ti,_, and the pyrolysis teeperature, Tp, must be
specified.
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Pars•star

OYoi

D¢o • c-_

Dcp - CsTi

k

keff

Le =_-_g

16_£rT _

NR " "_-_ef f

OE • ------:-_-"
O¥oi•gi

QR = -'---T_.
QToi•g 1

'_t)4t

a _usNus

_H
S . c.___c

c _usMus

V. '_usXus Y°iCs

_oNo c g

PgiCg

m - (l_e)osics

Physical Meanins
Dimensionless leasure of the
heat released per •ass of
oxygen ¢ons,,,,ed (varies.from
0 to 20)

Dimensionless measure of the

energy consumed by pyrolysis
(varies from 0.25 tO 1)

Dimensionless thereLI1 thick-
ness in Region Ill (varies
from 0.5 and 0.7)

Hodified levis number (usually
lies betveen 1.9 and 3.0)

Dimensionless radiation con-
ductivity (less th=.,_ 0.1)

External heat flux •ensUred
relative to the total enerr/
released in the reaction zone

Dimensionless •ensure of the
energy radiated to the
surroundings (varies from
0.005 to infinity)

Stolchiosetric coefficient

Stoichioeetri¢ ¢oefflent
(varies betveen 0.3 and 0.4)

Dimensionless char oxidation
velocity (varies from 0 to 1)

Gas phase response time
divided by the solid phase
response time (less than 0.04)

2.2.3 _asi-Steady Equations
Ter•s in Eqs. (12-14) involving time derivatives

can be neglected because _ is alvays less than 0.04.
-'-_s result is in agreement vtth the findinls of
Ohlesiller and others [8,14,17], vho reported that the
gas phase can be considered quasi-steady in many
nolderir_ combustion applications. Setting • equal tc
zero in lq. (14), integrating once, and combining vith
Eq. (I1),

-_ _ _
o, • ,1• .r(1.÷)3, (1.)

Equation (12) yields an explicit expressions for the
tuperature In Region ZZZ in fig. IA (x<O),

. e_/_ ,

After smoldering is initiated, Zq. (13) gives

Yo l elm x (20)
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Combining Eqs. (16,19,20),

_1 " _= " %°c°[(l'_•)4"l!Cl • ,R(i.÷m)3I a-_;.0"

Pro.(i•-_ig [ - o0% .(;e-g) (21)
Equation (21) determines Tm vhile _p is given by Eq.
(17).

2.3 CASE I"Z: ASH LAYER BUILDZHC BELOV .._OLDF_ VA_

After the initiation of smoldering, the coordinate
system moves vith the char oxidation zone. AS the
oxidation front propagates upvard, an ash layer of
height, h(t)=vt, builds belov the smolder rave - see
Fig. IB. Because the governing equations for Case ZZ
are very similar to those for Case I, only
dimensionless equations are presented in this section.
Relevant dimensionless variables are defined in the
preceding section and the dimensionless parameters
appearing in the folloving equations are listed in
Table IZ. As discussed previously, the gas phase
response time is such muller than the solid phase
response time (that is, m<<l). Consequently, the

temperature in Region IV in Fig. IB, the oxygen
concentration, and the gas phase lass flux profiles are
steady. Conservation of eners7 in Regions I through
ZIl in Fig. 1B again gives Eq. (18), vhilo in Region ZV

" Th e_/_ 422)

The temperature at _--_, _h(_), viii be determined by
applying the conservation of energy at the x.-h
interface. After smolder initiation, conservation oE
species for oxygen yields

I , for x>O
To " - axle ' for -h < x < 0 (23)

e_le/6 e(_÷_)le , for ; < -_

Equations (1,2) determine the solid density,

. _ - (l-sc) , (L-X) , forx>O.

" ISc , for -_<_<0 (24)
_0 , for x<-h

The folloving boundary condition| are imposed on
Eq. 18: as x-,--, T40; as x-_-, dT/dx_Q. The
temperature is continuous across all of the interfaces.
Before smolder initiation, conservation of enerlrY
across the x-O interface requires

[1 . NeCloTm)31 a-_TI - T ICl,ia)4 11a_ ;.0" • ° oR°c°

- og O¢os(_e-_) (2_)

After initiation, conditions at x--h and x-O are

_--_1 " _h l(Z._h )4 11[1 • NR(1.Th)3J _ _-0" * QRDc° "

- 0 E Oco B(te-t) (26)
and

- a_
,i. N_(I+,m)3{[_{x-O- '_ .

O_lg_N,_L PAGE IS
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respectively. Equations (25,27) determine Th and T m.

Motion of the pyrolysis front is still governed by Eq.

(17). Consideration of an ash layer introduces one

additional parameter, sa,

3. SOLtrrZONS

3.1 CASg Z: NO RESZDUAL ASH

Techniques for solving partial differential

equations vith moving interfaces have been developed
vithin the context of freezing and thavlng in cold

climates [261 and the charring of solids during a fire

[19]. The time-explicit finite difference scheme

presented by Lundarini [26] is utilized to solve Eqs.

(17,18,21). Temperature profiles after the onset of

saolderin I for typical values of the dimensionless

paraHters 8rl shove in Fig. 2. The maximum

teaperatur s, T,,, reaches i steady value before _.2.$.

A plot of Tm(t)/Ta(o)) is given in ?tg. 3 for tvo

_asess (1) the external heat flux is turned of! at

t-te.1.0 (solid line); (2) the heat flux 18 turned off
immediately after smolder initiation (dashed line).

Radiation and conduction heat transfer fro_ the

oxidation zone to the pyrolysis front becoles small

vhen the dimensionless distance betveen ths tvo

reaction regions 18 large - that is, vhen !.>>1.

Neglecting terms on the left hand side of Rq. (21), as

0RDco [(l*Tm) + - 11 * Ta ° 0CO (28)

Because QRDco is usually greater than 0.15 and Tu-2,
the first term on the left hand side of the above

equation is an order of uagnitude larger than the

second and consequently, Tm=Q-I/4-1, or in diaenslonal

form, Te=(01o'i/¢e)I/4. Thus, as a first 8pproxlution,

the peak temperature is determined by balancing the
heat released in the reaction zone and radiation heat

losses from the x-O interface. Typically, Q-12.3 kJ/i_

of 02, Yoi-0.23, _i'-0.006 k_/u2s and c-0.9, 81vlng
Te'-_§O°C. Because a small portion of the energy
released is used to preheat the incoain t gas, the peak

temperature rill be slightly lover than this value.

2 , '! ," | | _ I " _ 1 r' | 1 1 ! ,

I"

.,-)..
0 " I s L t S

o S 10-5

DIMENSIONLESS DISTANCE, | : z _cg/kew

PIG, 2: Dtunsionless teupersture, T, versus

dimensionless distance, x, at various values of
dimensionless time, t, for Came I, vtth 0co.12.0,

Dcp,O.3, 1.0.7, _iR-O, OE-I.0, OR-0.02;, Sc-0.3, V.O.2,
Te.l.O, Tp-l.0 and Tig-l.O.
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FIG. 3: Norullsed saxlstm temperature,

Ta(t)/Tm(- ), versus di_nsionleaa time, t, for tvo _
cases: (1) the external heat flux turned off at tote-1
(_); (2) the external heat flux turned off tmmldiately

after smolder initiation (--). Vith Dco-t2, Dco-0.3,

_00_7, NR,,O, Qe-l, QR-O.02, s¢-0.3, V-0.2, and -

Tp-TLg-1.

A plot of Tu versus QRDco for various values of 0co

is shorn _n Pi_g. _. Ssoldeztng vill 0ely occur vhen

Tp(.1) < T < Tflaa e, vhe:e Tfla_ e is a critical
temperature above the flauainl_ is observed. _igure h

also demonstrates the relationship b_tveen the ignition

temperature, Ttg, and the minlau_ external..heat __lux,

QE, that vail produce mlderin_ (replace T vith Tl_

and Dco vlth _ m,nD£o ). Note that (_ sin is found-by

setting Ta.Tig ;n_ d_/dx_=0+- 0 in _q: (21), givln_

Oe,ain oco. _= + oxnoo [(l+Y.)_-_l (29)
vhen either the ignition te_l,_rlture, Tlg, or the
radiation heat losses, _Dco, increase, a greater
amount of energy must be supplied to the bottom of the

material to produce saolderin_.
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FZG. 4: SettinlZequel to_the diaensionleN
•..xinua temperature, Tn, gives ?n versus dinensionlesi
radiative iosnes, 0RDeo, pertneterized in the
dinensionlsss heat reluase_ Don. Setting T equal to

the ipition ten[.irature, TiE, and replacing Dco vith
OE,ninDoo lives Til versus _Dco for various _,nin
Don,

Zntegratinqr IN. (11) froez-O to xoL and combtninl
the resulting expresiioa vith lki. (17) provides an

expression for 9p,

;p . 1_ {(in_ip) _ [l÷_(l÷in)3 ] I

d;- ÷ : (÷ -÷) (3=)
a;Jo Pdt " d,

Combining F,qs. (31,32), gives

P

AS _-0m, the pyrolysis velocity apprc, tchoz s constant
value vhich, in general, differs frne the char
oxidetiofl speed. Because the tvo reaction fronts move
at different velocities, no steady solutions exist and
countercurrent scolder propagation ts inherently
unsteady. Predicted vo(t'_e) Ire Compared vith
eessureuents by Ohleailler and lucca tan] in Fig. S.

0.615

E

0.010

_ O._S

IL

0._
0.0

I I I I I

-- • 4" .

• ÷

0.1 0.2 0.3 0.4 0.5 0.6

INLET GAS VELOCITY, ul (cm/s)

_Jo dL FIG S: Predicted (_) pyrolysis front velocities,- Sc | T dx . s c Yp d: vn(t"'), versus initial gas velocity, u i, f_r
¢;llulosic insulation vith (l-_)PstO34 kOL_n , Cs'2"t

kJ/kO, Qp.O.37 kJ/lrn, st-0.3, Tm-1"8 end Tp-1. Shove

XR(1._p)3] _ I } are .euure,ents [161 betveen thersocoupl"" l'nd 2 (A)+ r1 ÷ ;.L÷ (30) and betveen 2 and 3 (÷) - thermocouples 1, 2 and 3,
Of the 9herr/ that is transferred dovnstresa _ron the vere placed 7.5 ca, 10.1 ca and ll.h ca, from the
char oxidation zone (see the first tvo term on the bottom, respectively.

right hand side o| the above equation), only a portion Self-sustaining eountercurrent snoldering is not
is eoneumed in the pyrolysis reaction region. Host of
the energy is stored in the hot char in Region I1 in possible vhen dL/dt<0, corresponding to

Fig. 1A |14], a ssall.fraction is used to preheat the
unburnt solid in Pelion I and the reminder is consused
in pyrolysis. In the limit t_', radiative and
conductive heat transfer dovnstreu frne both reaction
regions is neglilible, sad Iq. (30) gives

" °o% "°c-;
Thus, energy consused in the pyrolysis zone and stored
by the hot char is supplied only by gu phase
convection in the Zim/t t -,e. A reau;onable
approxiution rot the second term on the left hand side
of the above eq,u.tion is

c|(Tn-Tp) VusHus (34)

Op < T°i

Solutions do not exist vhen the enerlrY convected
dovnstrtne from the oxidation zone is insufficient to
drive the pyrolysis front.

3.3.2 Case ZlI An Ash Layer Builds Belov Ssolder rave
Results presented in this section are restricted _o

s_ll Values of the stot_hLoaetric coefficient, st. In
Region lit in Fig. 1B (-h<x<0), the tern involving the
t/me derivative in Eq. (22) is am11 vhen sa<<l (note
that ps-Ze in Region 111). Thus, T is steady in Region
III vhen so<<1. Vhen the thickness of the ash layer is

DIe,fINAL P_E IS
OF POOr 'OUALITY
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much greater then xc, redistion heat losses from belov

are negligible. The residual ash serves as insulation,

leading to high peak temperatures. The dimensionless

tem_rature Of the oxidation zone, Tm, approaches DCO
ns t_m. For Yoi-0.2, Tu-2,500°C. Such high

temperatures rill produce flaming combustion in most
_terlals of interest (14J. In the absence of radial

heat losses, temperatures encountered in the
countercurrant configuration are much higher than those
in cocurrent smolder. This is due to the role of gas

phase convection. For countercurrant smolder, hot

gases produced in the reaction zone flov into the
unburnt solid, preheating the incoming fuel. Vhlle in

cocutrent smolder, gas phase convection carries energy

out of the system, ghen an ash layer builds belov the

smolder zone,_Eq. (33) still_determines the pyrolysis
velocity, v,(t-,*). Because Tm',Oco, gq. (33) nov gives

O

co (35)

dt t ÷ cp
D

co

Since OcolOcD..is fairly large, on the order of I0, Eq.
(35) yields _L/d_-l. In dimensional form,

dL/dt,pgiUlCg/(1-6)%ic s. Typlcally, ui-S _ 10 -3 u/s,

(l-d)Psi/Ogi_ and Cs--C z, giving dL/dt-lO -" m/s. Note
that v-3 X IO "a m/s for _hls case, so vp-l.3 X 10 -4
Ce/S.

4. CONCLUSIONS

A model of unsteady, countercurrent smoldering

combustion propagation has been developed. The

proposed appllcmtlon is an experiment for use on the

Space Shuttle. Due t? the mlccogravity environment, it

vas assumed that the propagation of the smolder vave
yam one-dlmensional. Radiation heat transfer yam

incorporated using a diffusion approximation.

Smolderin t combustion yam represented using a tvo step
mechanism, vhich included s pyrolysis reaction and s

char oxidation reaction. A "llama" sheet approximation

vas used to model the oxidation zone and it vss assumed

pyrolysis occurs st n knovn temperature, Tv. In

general, the tvo reaction fronts move st different
velocities and count.court.at smolder propagation vss

unsteady. Tvo cases vere considered: (1) no reslduml

ash, VaMaoO, and complete consumption of the char; and

(2) an ash layer forming beneath the oxidation zone,
due to either production of ash during oxidation,

_mMI_O, or leakage of char through the reaction zone.
Explicit expressions vere derived' for the char

oxidation velocity, v, the maximum temperature, T m, and

the pyrolysis front velocity, V , in the limit of long
time. Key results included: (_) in the absence of

radial heat losses, Vp approaches t constant value
vhlch is, in general, different from v; (2A) for the no

residual anh case, in limit of lon[ time, T u is
determined by a balance among the enerw released in

the oxidation region, the sherry required to preheat

the sam and radiation heat losses; (2B) vhen an ash
layer builds baldy the smolder vave, rmdistion heat

losses from the bottom ere negligible in the limit t_"

and T m is higher than in the no ash case; and (3) self-
sustained count.court.at saolderin_ combustion is only

possible vhen cg(Tm-To)/Qp_Yol_asMus/VoMo , i.e.
solutions cease to exlst vhen the enerw convected by

the gas phase is insufficient to drive the pyrolysis
front. _=

The need for further experimental investigation of

coontercurrent smoldering cannot be overemphasized.

Such exptrisents are necessary both to test the present

model and to guide future theoretical york. Especially

important is the transition to flasinl combustlon.

Results from this study indicate that such 8 transition

i8 more likely in materials vhich form 8 residual ash.

It is anticipated that these materials vill be readily

identified experimentally.
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Alntracl--A theoretical and experimental study is carried out to determine the effect of buoyancy on the

rate of spread of a cocurrent smolder reaction through a porous combustible material. Since buoyant
forces ate proportional to the product g(pp - p_), they can be controlled experimentally by varying either
the gravitational acceleration, g, or the density difference, p_ - p.. The latter approach was followed in
the present work. Measurements are performed of the smolder spread rate through porous _-cellulose
(0.83 void fraction) as a function of the ambient air pressure, The experiments are carried out in a pressure
vessel for ambient pressures ranging from 0.5 to 1.2 atm The rate of spread was obtained from the
temperature histories of thermocouples placed at fixed intervals along the fuel centerline. The smolder
velocity was found to increase as the ambient pressure was increased. Extinction was found to occur when
the buoyancy forces could not overcome the drag forces, indicating that at least for the present
experimental conditions transport by diffusion cannot, by itself, su'pport the spread of a smolder reaction.
This conclusion is particularly important for outer space conditions where gravity and consequently
buoyancy could be negligible. In the analysis, which assumes one-dimensional processes, the transport
equations are solved to give the smolder spread rate as a function of the inlet oxygen mass flux. This mass
flux is then estimated by balancing buoyancy and drag forces. Assuming that the smolder chemical
reaction is only weakly dependent on pressure, the analysis finally predicts a smolder velocity dependence
of the form v ~ Y,,gp_ _ Pa 2, i.¢. is proportional to the ambient pressure squared. Good qualitative
agreement is found between the theoretical predictions and the experimental results.

1. INTRODUCTION

Smoldering combustion, which is defined as burning

and smoking (that is, combustion) without flame, is

present in a variety of combustion processes ranging

from the burning of porous building materials to

underground coal combustion. The host for the

smoldering process is a porous combustible material.
It is at the surface of this material where a hetero-

geneous chemical reaction takes place. Smoldering

involves complex processes related to fluid mechanics

and heat transfer in a porous media together with

surface chemical reactions. Chemically, the porous

combustible material is a hydrocarbon (for example,

cellulose or polyurethane) which can sustain surface
reactions and produce enthalpy and desorbing

species---primarily CO2, H2 and CO. It usually under-

goes considerable chemical change as the smolder

wave propagates through the material from virgin

bulk to slightly heated and pyrolytic material io

largely carbonaceous char and ash behind the wave.

The slower the wave propagates, the more complete

its decomposition and combustion. Once established,

self-sustaining smoldering well within this bulk can

be difficult to extinguish.

"tPaper IAF-85-289 presented at the 3&h Congress of the
International Astronautical Federation, Stockholm, Sweden,
7-12 October. 1985.

When smoldering is initiated at the top of the

material in a natural convection environment, the

reaction zone travels downward, in the direction

opposite to the buoyantly induced flow of air. Be-
cause the fuel and the oxygen enter the reaction zone

from the same direction, this configuration is often

referred to as coeurrent. Smoldering combustion is an

oxygen-limited phenomenon[l,2]. Since, in most

cases, all of the available oxygen is consumed, the

total heat release is approximately proportional to

the incoming oxygen mass flux. Increasing the buoy-

ancy force increases the gas velocity, leading to higher

temperatures and faster reaction rates[2]. For this

reason, the rate at which a self-sustaining smolder

wave passes through a porous material is very de-

pendent on the magnitude of the buoyancy force

relative to the magnitude of the drag forces.

Some of the earliest work in smoldering com-

bustion was undertaken by Palmer[3], who measured

the rate of smolder spread in dust trains and heaps.

Since then, a number of experimental and theoretical

investigations have appeared in the literature. Topics

of research include smolder propagation in

cigarettes[4,5], coa116,7], polyurethane foams[8-10],

wood[I 1-13] and wood productsIl4]. Smoldering
combustion in the coeurrent configuration has been

investigated experimentally with polyurethane

foam[ 15] and loose-fill cellulose insulation[ i 6] used as
fuels. These materials exhibited similar smolder char-
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acteristics. Raising either the oxygen concentration or
the gas velocity led to higher burning rates.

The objective of the pr_-nt work is to study, both
experimentally and thcoretically, the effect of buoy-
ancy on cocurrent smoldering combustion. Buoyant
forcer,, which are proportional to the productt
g(Pm - Os), can be controlled experimentally by vary.
ing either the gravitational acceleration, $,, or the

density difference Op- Ps. The latter approach is
followed in the work presented here. By changing the
ambient pressure, the density of the gas and con-
sequently the buoyant force is varied. The rate of
smolder spread through porous cellulose is measured

for air pressures ranging from 0.5 to 1.2 atmospheres.
The smolder velocity is found to increase as the
ambient pressure is increased.

A model of cocurrent smoldering combustion un-
der free flow conditions is also developed. In one
dimension, the local gas velocity is determined from
the conservation of mass--as a function of the inlet

gas velocity (ui). Sinoe the pressure varies by a small
amount over distances comparable to the thickness of
the smolder wave_l,171, the transport equations can
be solved before considering the momentum equa.
tion. Solution of these equations provides the rate of

smolder spread as a function of t_. The quantity,
is then estimated by using an integral momentum
analysis. The predicted smolder velocities are in
qualitative agreement with the measurements.

2. MAT_MATICAL FOILMULATiON

A schematic of the problem under consideration is
presented in Fig. !. A porous combustible solid with
density 0_, temperature T, and void fraction 0, is
contained in a vertical cylinder. Smoldering is ini-

tiated at the top of the porous material using a planar
ignition source. The smolder wave propagates down-
ward opposing a buoyantly driven upward flow of
oxidizer. The gaseou_ oxidizer has an oxygen cortcen-

tration Y,, and a density Og. While all of the oxygen
is consumed in the reaction zone, a considerable
amount of solid remains. In a frame of reference

moving with the reaction zone, the sofid fuel and the
oxidizer enter the smolder wave with velocities c and

u, + v, respectively.
Over distances comparable to the smolder wave

thickness, variations in pressure can be taken as a

perturbation[l,2,17]. That is, P., Pa + p, where p /Pa
is small quantity. In one dimension, the conservation
of gas mass determines the gas velocity as a function
of the inlet velocity (t_). To leading order, the trans-
port equations can be solved before considering the
momentum equation. The transport equations are
formulated in this section and a solution is presented
in Section 3. The smolder velo_ty and the peak
temperature are functions of _. The determination of
u, is discussed in Section 4.

tNomenclature is given in Appendix at end of _l

R_,on rr react_x_ zone

l V ( So_KI vtlo_ty )

T U,+V (Gas v_ioc_y)

_n _'T_ ur_a-nt solid and atr

Fig. I. Schematic of cocurttmt smoldering combustion
viewed in a frame of reference moving with the reaction

zone.

Assumptions made in the following analysis in-
clude:

1. The propagation of the smolder wave is one-
dimension_.! and quasi-steady in a frame of reference
moving with the smolder wave.

2. The gas phase and the solid phase are in local
thermal equilibrium (that is, T, = Ts),

3. Radiation heat transfer can be modelled using
a diffusion approximation.

4. The smolder chemical reaction is of the form

v_(unburnt solid) + voO2-* v.(ash)

+ vo(gaseous products) (!)

5. Thermophysical properties are constant.

In a frame of reference moving with the smolder
wave, solid and gas phase mass fluxes are (symbols

are defined in the Appendix and Tables 1 and 2)

m, = (t.- ¢)p,v, (2)

,,7.= 4,p.(u + v). (3)

The conservation of mass requires

m = m, + ms = constant (4)

Phase and species ma__ flux fractions are defined, as
follows,

_, = ,n.l,n. (5)

_, = mslm, (6)

c. = Y.,..Im. (7)

_ Yop,(u +v + to)
= , (8)

B'/



Smoldering combustion

Tablc 1. Dimensionless groups

69!

T,-r,

r,

= _ (Tr- T,)

b ¢

A kZ(Y.p_)'p,,Tf
,.:cEJ °

krEp

xl ¢_prDc

__(,',pM._ l)Y.n_ \ _'oMo

k k

exp(- E / RTr)

Change in temperature divided by the final temperature

Zcldovich number

Damkohler group

Modified Levhs number

Fractional increase of the gas phase mass flux

Ratio of the thermal conductivity to the effective thermal conductivity
(radiation and conduction)

Equivalence ratio

where Vo is the diffusion velocity of the oxygen.

Equation (I) gives the following relationships be-
tween these fluxfractions

! d_.,= I dE.= 1 dq
v.,M., clx voMo d.x (v.,M,, - v.M,) dr.

1 des (9)
=_ (vpM_, - v.M,) _"

Distances are measured relative to kr/rac, where
kr = k + k_T ] is the effective thermal conductivity.

A dimensionless temperature is defined as,

T = _T- T_ (10)
Tr- T_"

Since all of the incoming oxygen isconsumed in the

reaction zone, gg, _° and Y, are nondimensionalized

by their initial values (Table 2).

In dimensionless form, the transport equations are

[I7]:

Conservation of oxygen

d_.
_ =- --w. (11)
d_

Table 2. Dimensionless variables

(o

P_

T T-T,
r',- T,

i/

u_

Y.,

Dimensionless oxygen mass flux

Dimensionless gas density

Dimensionless temperature

Dimensionless gas velocity

Dimensionless oxygen concentration

Fick's Law

_1d1'o= [I+ =,0 02)
ns d_

Consercation of energy

{n_+ (l - =,)[I, ,,(I - T)]'}

= T-O-_o). (13)

Auxilliarv relations (Arrhenius type reaction rate}

w =(,]z.)'[I--_(1-_.)_[I-.(I-1")] _ -

xexp( [l--'--'----"_O--?)j,] (14)

The dimensionless groups and variables are given in

Tables 1 and 2 respectively. Dividing eqns (11.12) by

eqn. (13), the spatial coordinate :_ can be eliminated.

In terms of the new coordinate 2_, the boundary
conditions are

as T--.0 _.--.I (15)

as T -. I _,--,0 (16)

?°-.0

3. AN ASYMPTOTIC SOLL'I'ION OF THE
TRANSPORT EQUATIONS

For cellulose, the Zeidovich number, _. is on the

order of fifteen[14]. Because of Arrhenius-type de-

pendence of the reaction rate on temperature, rela-

tively small changes in temperature can lead to large

changes in the reaction rate. Under such circum-

stances, it is reasonable to assume that the oxidation
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reaction is confined to a thin region[18]. This region

acts as a source for energy and a sink for oxygen. The

reaction zone is. in essence, a derivative layer. Tem-

perature and oxygen concentration vary continuously
across this layer, while their derivatives undergo a

discontinuous change.

Since region II (Fig. 1) is fairly thin. the source
terms in the governing equations are balanced by

diffusion. [n the outer regions (regions [ and III),
convection and diffusion balance. The smolder veloc-

ity and the maximum temperature are determined by

matching the inner solution with the outer solutions.
The details of this matching process are available in

[I7]. The following results are pertinent to this study.

= I, (17)
c(r_- r,)

A = f('_) 08)
=_r(l +a)'

where

t dt
(19)

Equations (17, 18) determine v and Tf as functions of

g. As illustrated in Figs 2 and 3. both v and Tr

increase as the inlet oxygen mass flux (Y=0Ppg) is
increased.

4. CONSIDERATION OF THE
MOMENTUM EQUATION

The inlet gas phase velocity (ui) is determined from

an integral momentum analysis. A characteristic gas

phase velocity is defined by balancing buoyancy

forces and drag forces.

0 PFg (20)
bta_i

P

I

400

3O0

2OO

1oo

o ! I
o.o 05 1.o

Oxygen moss flu-, _/m 2 se¢ (XiO 4)

Fig. 3. Final temperature. Tr. as a fun ._ion of the inlet
oxygen mass flux. OY=ppu,.

where/za= is the proportionally constant in Darcy's

Law. The gas density, p,. is nondimensionalized by

PIP.
In the absence of an imposed pressure gradient, the

conservation of momentum requires (see Nomen-

clature section in Appendix):

'_d_ d.¢ = (1 -- fl,,) d._, (21)

where L is the chimney height, h is the height of the

virgin solid and ho- h is the char height. While the

flow resistance, as, is lower in the char layer, the gas

phase velocity is higher. The latter is due to both gas

generation and expansion in the reaction zone. There-

fore, it is reasonable to assume that a_u remains

approximately constant. Using this assumption, eqn

(21) yields the following relationship between g and

a (which depends on T¢),

[ ÷'-q..ju, = _' I --'7--.. (22)
k _

3
E

03

I
ol

O0
1

05
I

I0

Oxygen mass flux, xq/m _ sec |X104)

Fig. 2. Smolder velocity, r, as a function of the inlet oxygen
mass flux. ¢_Y_ppu,.
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Fig. 4. Inlet gas velochy, u,, as a function of a characteristic
buoyancy force, RPp.
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Fig. 5. Schematic diagram of the experimental installation.

Equations (17, 18,22) determine v, Tf and u,. As

illustrated by Fig. 4, _ is approximately proportional

to the characteristic buoyancy force gp_. Since the
smolder velocity is proportional to the oxygen mass
flux,

v ~ Y..p_u i ~ YagP_. (23)

Assuming that the reaction rate of the smolder

reaction is independent of pressure, it can be deduced

from the above expression that the smolder velocity
is proportional to the ambient pressure squared, that
is v ~ Pa 2. Since the reaction rate for most fuels is

only weakly dependent on pressure, it is expected that

the above velocity/pressure dependence will be valid
at least for relatively small variations of the ambient

pressure. However, if the ambient pressure is reduced

considerably, the reaction rate and temperature will
decrease to the point that extinction will occur. The

reduction of the flow of oxygen to the reaction zone

due to both the decrease in pressure and post-

combustion temperature, i.e. decrease in buoyancy,
will also add to the onset of extinction.

5. EXPERIMENT

Experiments are performed to determine the effect

of ambient pressure, and consequently of buoyancy,

on the rate of smolder spread through a porous

combustible material. A schematic diagram of the

experimental installation is shown in Fig. 5. The

experiments are carried out in a cylindrical pressure
vessel 1.8 m in diameter and 3.3 m long. A vacuum

pump or a compressor is used to set the vessel

pressure below or above atmospheric pressure. The

oxygen concentration in the vessel can be varied by

adding oxygen or nitrogen from pressurized bottles.

Acrylic windows located at opposite sides of the

vessel provide optical access to the test area. The

fuel/container unit is held by a frame in the middle
of the test area, avoiding the obstruction of the flow

of air in and around the fuel container.

The porous fuel is contained in a vertical Pyrex

cylinder 0.07 m in diameter and 0.16 m long. These
dimensions, in particular the cylinder diameter, are

selected to reduce to a minimum, the depletion of
oxygen in the vessel during the fuel combustion

process, while ensuring a one-dimensional smolder
spread process in a region of at least 2 cm in diameter

around the cylinder axis: Small holes placed longi-

tudinally along the side of the cylinder allow the

positioning of thermocouples or gas sampling probes
in the porous material. A nichrome wire electrical
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igniter can be positioned at the top or bottom of the

cylindrical container to initiate the smoldering pro-
cess at either end of the cylinder. As an alternative

ignition method, an easily ignitable fuel (cellulose
soaked in heptane for example) is thinly spread on

top of the porous material and ignited with a small

pilot flame or spark. The flaming combustion of the

volatile fuel initiates the smoldering combustion of

the porous combustible. A chimney 0.33 m long and

0.03 m in diameter, tapered at the bottom to a

diameter of 0.07 m is fitted on top of the fuel con-

tainer. The chimney is used to both enhance the

buoyancy driven flow of oxidizer through the porous

fuel and to prevent the diffusion of air to the top
surface of the combustible material. The fuel con-

tainer and the chimney are insulated with a fiber-glass
jacket to reduce heat losses to the environment.

The rate of smoldering spread is measured from the

temperature histories of thermocouples embedded in

the porous fuel and with their junction placed at fixed

distances along the cylinder axis. Four Chromel-

Alumei tbermocouples 0.8 mm in diameter, are em-

bedded in the porous fuel at 5 or 10 mm apart. The

emf from the thermocouples is amplified to volt levels

and processed in a real time data acquisition micro-

computer. With the fuel temperature histories, the

rate of spread of the smolder reaction is calculated

from the time lapse of reaction zone arrival to two

consecutive thermocouples, and the known distance

between the thermocouples. The arrival of the

smolder reaction zone at the thermocouple position

is characterized by a maximum in the temperature

profile. Under most experimental conditions this

maximum is not sharply defined, which introduces
inaccuracies in the definition of the smolder front

arrival time and consequently in the calculation of the

smoldering spread rate. In spite of this problem, the

thermocouple probing method is considered to be the

most practical and accurate method to measure the

rate of smolder spread.

6. RESULTS AND COMPARISON

The experiments presented in this work were car-

ded out using :t-Cellulose powder as porous com-
bustible material. A preweighted amount of cellulose

is loosely packed in the cylindrical container filling a

constant volume, therefore keeping an approximately

constant void fraction. The cellulose is supported at

the bottom by a wire mesh which is attached to the

cylinder surface 40 mm from the cylinder top. The

upper cellulose surface is kept flush with the top

cylinder rim. The 40mm cellulose bed height was

found to be the maximum at which the present

experimental set up could operate. For larger heights,

the pressure drop in the system is apparently too large

to be overcome by the chimney generated buoyancy,

particularly at the lower pressures tested. The re-

suiting induced flow of air is not large enough to

sustain the progress of the smolder reaction. AI-

Fig. 6. Electron microscope photograph showing the struc-
ture of the ,,-cellular ( x 300).

though longer fuel beds could be tested by increasing

the chimney height, it was decided that a 40 mm fuel

height was sufficient to provide the information

sought in this work. All the experiments were per-

formed with an approximately constant cellulose void

fraction of 0.82. The void fraction was estimated

from the measured weight, occupied volume and a

cellulose density of 0.62 x 10 _ kg/m 3. An example of
the structure of the cellulose used in the experiments

is shown in the photograph of Fig. 6, taken with an

Electron Microscope at a magnification of x 400. It

is seen that the material is formed primarily by long,
interlaced, cellulose fibers. Photographs, as the one

shown in Fig. 6, can be used to approximately

estimate the Darcy coefficient of the porous fuel.

The measured rates of smolder spread through the

cellulose are presented in Fig. 7 for several ambient

air pressures. For the measurements, the four ther-

mocouples were placed, in most cases, 5 mm apart

from each other with the first thermocouple located

15 mm from the top cellulose surface. In a few tests,

the thermocouples were positioned at distances

10 mm apart. The smolder velocities presented in Fig.

7 were calculated from the outputs of the second and

E

Smolder ve_x:_ty
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Fig. 7. Measured and predicted smolder velocity, t'. as a
function o1"the ambient pressure. Pa.
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fourth thermocouples, because they seemed to pro-
vide the most reproducible data. As it is seen from thc
results of the figure, there is scatter in the measure-
menu. particularly at higher pressures. We, believe
that this is primarily the result of inaccuracies in the
determination of the arrival of the smoldering front
at the thermocouple location. This _s more noticeable

at higher pressures because the smolder velocity is
higher. The scatter in the data may be also the result
of small variations in the cellulose void fraction and

location of the thermocouples. For comparison pur-
poses, the theoretically predicted smolder velocity is
also presented in Fig. 7. For the theoretical calcu-
lations, the Darcy coefficient is selected such that
at atmospheric pressure the theoretical prediction
agrees with the average measured smolder velocity.
Approximate estimation of the Darcy coefficient
from the Electron Microscope photographs (Fig. 6)
gives values for the smolder velocity that are approx.
30% lower than those presented in Fig. 7. Although

the comparison between theory and experiments can
only be considered here as qualitative, it is seen from
Fig. 7 that the theoretical model predicts very well the

general trend of the experimental results, with the
smoldering velocity decreasing as the ambient pres-
sure decreases. This is the result of the decrease of the

flow rate of air through the system as the pressure,
and consequently the buoyancy, is decreased.

An interesting experimental observation is that the
smolder reaction does not spread at ambient pres-

sures below 0.6 aim. We believe that this is primarily
due to the inability of the oxygen to reach the
reaction zone because at this pressure the buoyant
forces cannot overcome the pressure losses. The
decrease of the reaction rate due to the decrease in

pressure is probably another factor that contributes
to the extinction, or lack of spread, of the smolder
reaction. The present theoretical model is not capable
of predicting extinction and, thus, cannot be used to
predict this experimental result. An important con-
clarion of this experimental observation is that, at
least for ,,-cellulose with void fractions equal to or
larger than the one used here and for air as oxidizer,
smolder combustion wi[1 not take place if species
diffusion is the only mechanism to transport the

oxidizer to the reaction zone. This result could b¢_ _
particularly important for the potential development
of smolder combustion process under micro-gravity
conditions, in space vehicles for example, since buoy-

ancy forces would be negligible and the flow of
oxidizer would have to be driven by diffusion or
forced.

In Fig. 8 the predicted and measured peak tem-
perature are presented as a function of the ambient
pressure. It is seen that there is good qualitative
agreement between experiments and theory, although
the predicted temperatures are lower than the
measured ones. This result is probably due to the
simplified chemical kinetic model used in the theory.
The complex chemical reactions taking place at the

fuel surface arc simply modeled with a one step
reaction with an Arrhenms type reaction rate. Fur-
thermore, the values of the activation energy and
pre-cxponential factor used to calculate the reaction
rate are not accurately known. Selection of a larger
value of the activation energy or the pre-exponential

factor could result in a better quantitative agreement
between theory and experiment.

7. CONCLUDING REMARKS

Theoretically predicted rates of smolder spread and
peak reaction temperatures during the natural con-
vection, cocurrent, smoldering combustion of porous
cellulose in air at varied ambient pressures agree well,
at least qualitatively, with the experimental results for
ambient pressures that do not differ considerably
from the atmospheric value. The quantitative
differences appear to be due primarily to
simplifications used in the modeling of the chemical
reactions taking place at the fuel surface, to uncer-
tainties in the value of key process parameters such
as activation energy, pre-exponential factor, Darcy
coefficient and void fraction, and to experimental
errors because of difficulties in measuring accurately
the rate of smolder spread.
• It is found that the presence of a steady flow of

oxidizer toward the reaction zone is of critical im-
portance for the progress of the reaction zone. Both
the smolder velocity and reaction temperature are
strong functions of the oxidizer flow rate, increasing
with it. Extinction is observed to occur if the flow rate

is below a critical value. This indicates that, at least
for cellulose with void fraction as the one tested in

this work or higher, diffusion of oxidizer toward the
reaction zone is not a sufficient transport mechanism
to sustain the cocurrent smolder combustion process.

OeO__

6OO

5o0

l l
O.60 OeO 1OO _20

Go_ ¢)ressum (ram)

-- pnK_
0 e=_ a_ men'nocoL_e 2

O

Fig. 8. Measured and predicted reaction zone peak tem-

perature, Tr, as a function of the ambient pressure.



This result is particularly important for natural con-
vection smoldering combustion under microgravity

conditions since buoyancy forces are very small and

the oxidizer can only be transported to the reaction

zone by diffusion. The present results suggest that for
smolder combustion to occur in a microgravity envi-

ronment, the flow of oxidizer must be forced through

the fuel,or the porous fuelmust have,among others,

a largevoid fraction,a small Darcy coefficient,a low

activationenergy and a largeeffectivethermal con-

ductivity,that is,propertiesthat favor the transport

of heat and mass by diffusion and that present

minimum obstruction to the freeflow of gases.

The present work, however, can be only viewed as

preliminary.Theoretical predictionsand detailedex-

perimentsof the smolder extinctionprocessare neces-

sary. Experiments with other porous fuels,and in

particular the accurate determination of the condi-

tions at which smolder combustion would occur in a

microgravity environment are also necessary.
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APPENDIX

Nomenclature

ad = Darcy coefficient
.c = Heat capacity
D = Mass diffusivity of oxygen in air
E = Activation energy
g = Gravitational acceleration
h = Height of the virtcn solid
k -- Effective thermal conductivity of the solid and the

gas = _t, + (I -¢_)_
m ffi Mass flux

M_ ffi Molecular weight of species i
P = Pressure
Q = Energy releasedpermass of oxygen consumed
T ffiTemperature

u = Velocity of the gas phase
v -- Smolder velocity

V; = Diffusion velocityof gas species i
Yo = Density of the oxygen/density of the gas phase

Y,, ffi Density of the unburnt solid/density of the solid
Z = Pre-exponential factor

Greek letters

_' = Zel'dovich number
( = Mass flux fraction
p = Density
p =, Dynamic viscosity

v_jffi Stoichiometric coefficient
¢_ = Void volume/totai volume

_b,q= Equivalence ratio

Subscripts

affiAsh

fffi Finalvalue (x= +oo)
g = Gas phase

gp = Gaseous products
i = Initial value (x ffi - 0o)
s ffi Solid phase

us = Unburnt solid
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Smoldering Combustion Analyses

by

Sudip S. Dosanjh

ABSTRACT

Smoldering combustion propagation through very porous

solid materials is examined. The proposed application is an

experiment for use on the Space Shuttle. Due to the

microgravity environment, smolder propagation is assumed to

be one-dimensional. Two configurations are considered: (1)

cocurrent, premixed-flame-like or reverse ; (2) counter-

current, diffusion-flame-like or forward.

In cocurrent smoldering combustion, both forced and

free flow are analytically represented. It is assumed that

the propagation of the smolder wave is steady in a frame of

reference moving with the wave. Smoldering is described by a

finite-rate, one-step, oxidation reaction and radiation heat

transfer is incorporated using a diffusion approximation.

The dimensionless equations are very similar to those

governing the propagation of a laminar premixed flame. A

straightforward extension of the activation energy

asymptotics analysis presented by Williams yields an

expression for a dimensionless eigenvalue,_, thus

determining the final temperature, Tf. A global energy

balance then determines the smolder velocity, v. Explicit

expressions are derived for the smolder velocity, v, and the

final temperature, Tf. An approximate extinction criterion



2

is identified.

A model of unsteady, forced, countercurrent smoldering

combustion is also presented. Smoldering is represented

utilizing a two step mechanism consisting of a pyrolysis

reaction followed by a char oxidation reaction. A "flame"

sheet approximation is used to model the oxidation reaction.

It is assumed that pyrolysis occurs at a known temperature,

Tp. Because the two reaction zones move at different

velocities, countercurrent smoldering is unsteady. Two cases

are considered: (i) no residual ash, 9aMa=0, and (2) an ash

layer forming beneath the oxidation zone, _aMa_0. The

residual ash serves as insulation, and its presence leads to

higher peak temperatures. Explicit expressions are derived

for the oxidation velocity, v, the maximum temperature, Tm,

and the pyrolysis front velocity, Vp.

/
Patrick/J. Pagni

Chairman, Thesis Committee



i

ACKNOWLEDGEMENTS

I would like to thank Professor Patrick J. Pagni for

his encouragement and guidance. His caring support during my

studies is deeply appreciated.

This work would not have been possible without my

parents love and encouragement.

Special thanks to my wife Lynn for her love and

patience.

This work was supported by the National Aeronautics and

Space Administration Lewis Research Center under grant No.

NAG-3-443.



ii

CONTENTS

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

NOMENCLATURE

i. INTRODUCTION

i.i Phenomenon of Interest

1.2 Related Studies

1.3 The Present Contribution

2. FORCED COCURRENT SMOLDERING COMBUSTION

2.1 Introduction

2.2 Analysis

•

2.1.1

2.1.2

2.1.3

Assumptions

Governing Equations

Dimensionless Governing Equations

2.3 Activation Energy Asymptotics

2.4 General Solution

2.4.1 Fields

2.4.2 Final Temperature and

Smolder Velocity

2.5 Influence of Buoyancy

2.6 Conclusions

FORCED COUNTERCURRENT SMOLDERING COMBUSTION

3.1 Introduction

3.2 Analysis

3.2.1 Assumptions

3.2.2 CASE I: No Residual Ash

Page

i

ii

v

1

1

5

8

12

12

18

18

2O

25

27

3O

30

38

41

42

44

44

47

47

51



.

.

3.2.2.3

Governing Equations

Dimensionless Governing

Equations

Quasi-Steady Equations

51

53

58

3.2.3 CASE II: Ash Layer Building

Below the Smolder Wave 59

3.3 Solutions 63

3.3.1 CASE I: No Residual Ash 63

3.3.2 CASE II: Ash Layer Building

Below the Smolder Wave 69

3.4 Conclusions 70

FREE COCURRENT SMOLDERING COMBUSTION 73

4.1 Introduction 73

4.2 Analysis 75

4.2.1 Governing Equations 75

4.2.2 Asymptotic Solution of the Transport

Equations 79

4.2.3 Final Temperature, Inlet Gas

Velocity and Smolder Velocity

4.3 Experiments

4.4 Results and Discussion

4.5 Conclusions

FUTURE RESEARCH

5.1

5.2

5.3

Introduction

Experiments

Comparisons with Theory

82

86

88

96

99

99

102

105

iii



iv

6.3

REFERENCES

APPENDICES

Ae

CONCLUSIONS

6.1 Summary

6.2 Results

Future Research

So

C.

CHEMICAL KINETICS

A.I Alpha-Cellulose

A.2 GM-25 Polyurethane Foam

A.3 Wood Dust

A.4 Cellulosic Insulation

A.5 Summary

THERMAL EQUILIBRIUM BETWEEN PHASES

DERIVATION OF THE TRANSPORT EQUATIONS

General Assumptions

Conservation of Energy

Conservation of Species

C.3.1 Gas Phase

C.3.2 Solid Phase

C.I

C.2

C.3

114

114

117

118

120

124

124

126

127

129

129

132

134

134

135

138

138

139



CHAPTER I

1

INTRODUCTION

I.I PHENOMENON OF INTEREST

Smoldering is defined as a heterogeneous oxidation zone

propagating through a porous fuel [i]. Oxygen diffuses to

the surface of the solid where it is adsorbed [2]. A highly

exothermic reaction ensues. The products of combustion

(primarily CO 2, H20 and CO) desorb and diffuse away from the

surface. Many materials can sustain smoldering. These

include coal !3,4], cotton [5,6], paper [7], polyurethane

foams [8-11], wood [12-14], thermal insulation materials

[15] and various dusts [16,17]. If the host material is

sufficiently permeable, smoldering is not necessarily

confined to its outer surface. A self-supporting exothermic

reaction zone can pass through the substance [I]. Oxygen

reaches the reaction zone by convection and diffusion.

However, such a scenario is not valid for all porous

materials. Upon being heated, some substances decompose into

a "liquid" tar [8], restricting the flow of air through the

material and consequently inhibiting the propagation of such

a smolder wave. Smoldering combustion can be prevented in

some materials by adding sulfur [6,18].

There are two distinct classifications for the one-

dimensional propagation of a smolder wave - see Figs. i-i

and 1-2. The reaction zone travels downward when smoldering
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is initiated at the top of the material, moving in the

direction opposite to the flow of air, corresponding to

reverse smolder. This configuration is also referred to as

Cocurrent or premixed-flame-like because the fuel and the

air enter the reaction zone from the same direction. On the

other hand, the reaction zone travels upwards when

smoldering is initiated at the bottom, moving in the same

direction as the air flow, corresponding to forward smolder.

In this case the fuel and the air enter the oxidation zone

from opposite directions. This configuration is also

referred to as countercurrent or diffusion-flame-like.

If the inlet gas velocity, ui, is held fixed, smolder

propagation in the cocurrent configuration becomes steady

and the burning velocity reaches a constant value [2,19,20].

While almost all of the oxygen reaching the reaction zone is

consumed, a considerable amount of solid remains behind in

the form of a residual ash. This ash serves as insulation,

letting fairly weak smolder waves propagate [20]. Because

all the available oxygen is consumed, the amount of heat

released in the oxidation zone is proportional to the oxygen

.q

mass flux, moi. The smolder velocity is highly dependent on

• #1 - II

moi, increasing linearly with moi. On the other hand, the

II

peak temperature is only weakly dependent on _oi' increasing

logarithmically with moi [2,20,21].

Smolder propagation in the countercurrent configuration

is unsteady [19]. This unsteady behavior is due to the

presence of two reaction regions. A pyrolysis reaction zone



moves upwards through the solid leaving behind a fairly

black char. Oxidation of this char in a thin zone provides

the energy required to sustain smoldering [19]. As in a

diffusion flame, all of the available fuel and oxygen is

consumed in the oxidation zone [2,19]. Therefore, the char

oxidation speed is fairly constant and is proportional to

the incoming oxygen mass flux, with the proportionality

constant determined from stoichiometric conditions. Because

the pyrolysis reaction is endothermic, the motion of the

pyrolysis front is very dependent on heat transfer from the

oxidation zone. In the absence of heat losses from the sides

of the cylinder, the pyrolysis front velocity approaches a

constant value, which is, in general, several times larger

than the char oxidation speed [19]. Consequently,

countercurrent smolder propagation is inherently unsteady.

Another important difference between the two

configurations is the direction in which energy is convected

by the gas. In the cocurrent configuration, hot gases

produced in the reaction region flow into the burnt solid.

Consequently, heat transfer by radiation and conduction must

provide the energy required to preheat the unburnt solid. In

the countercurrent configuration, energy convected by the

gas phase raises the temperature of the unburnt material.

Therefore, in the absence of heat losses, temperatures

encountered in the countercurrent configuration are higher

than those encountered in cocurrent smolder.



1.2 RELATED STUDIES

Early work in smoldering combustion was conducted by

Palmer [17], who measured the rate of smolder spread in

various dust trains and heaps. Since then, researchers have

studied smolder propagation in a wide variety of

configurations. Cocurrent smoldering combustion has been

examined experimentally using polyurethane foams [22],

cellulosic insulation materials [19] and packed beds of

alpha-cellulose fibers [23] as fuels. Ohlemiller et al [20]

developed a large computer code to investigate unsteady,

cocurrent, smolder propagation in flexible polyurethane

foams. A pulse of radiation was used to initiate smoldering

at the top of the porous ................reactions (pyrolysis and

oxidation) were included in the analysis. The solid and the

gas were presumed to be in local thermal equilibrium (that

is, Ts=Tg) and radiation heat transfer was incorporated

using a two-flux model. Because their method required

expensive finite element calculations, Ohlemiller et al

concluded that a primary use of this model is to study the

initiation of smoldering combustion.

Relatively little attention has been given to

smoldering combustion in the countercurrent configuration

[i]. Ohlemiller and Lucca [19] conducted an experimental

investigation of this problem using cellulosic insulation as

a fuel. Summerfield et al [24] presented a one-dimensional

numerical model of smolder spread in a cigarette during

steady draw. Two reactions were included, pyrolysis and char



oxidation. Because the wrapping paper burns back, a

significant amount of air bypasses the hottest part of the

char oxidation region. Consequently, cigarette smolder is

much more complicated than the countercurrent smoldering

scenario depicted in Fig. 2-2.

Several researchers [25-27] have investigated

countercurrent propagation within the context of coal

gasification in a packed bed. A large number of reactions

were included in these analyses. One of the most complete

numerical solutions was presented by Winslow [25]. In his

unsteady, one-dimensional model, different gas and solid

temperatures were used and concentrations of eight chemical

species, two forms of water (surface and interior), coal and

char were calculated. Good agreement between measurements

and calculations was reported. However, due to the

complexity of the solutions, it is difficult to determine

which mechanisms dominate the movement of the six reaction

fronts.

Steady smolder spread in horizontal, cylindrical,

alpha-cel!ulos@ and polyurethane, fuel elements was examined

by Moussa et al [28] and Ortiz-Molina et al [29],

respectively. The gas and the solid were assumed to be in

local thermal equilibrium. The material was divided into two

regions, an isothermal char-oxidation zone, the length of

which was determined empirically, and a pyrolysis zone. Two

competing reactions were used to model pyrolysis. Good

agreement between the predicted and measured extinction
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limit was reported.

Muramatsu [30] formulated a model of evaporation-

pyrolysis processes inside a cigarette. No attempt was made

to model the burning region. Energy convected by the gas

phase was considered negligible and the smolder speed was

determined experimentally. Since the burning velocity was

known a priori, the mathematical formulation was an initial

value problem and a Runge-Kutta integration technique was

used. Another study concerned with modeling the smoldering

of cigarettes was carried out by Baker [31]. Empirically

determined temperature profiles and gas species

concentrations were used to find the net rate of chemical

production of heat and the consumption of oxygen.

Recently, Leisch et al [32] modelled the steady

smoldering combustion of dust layers in a quiescent

atmosphere. Two reactions (pyrolysis and char oxidation)

were considered. The oxygen supply was considered uniform.

Consequently, there was no need to consider gas species

equations. The smolder velocity, which is an eigenvalue of

the problem, was determined by a trial and error numerical

integration.

A fairly complete mathematical formulation of the

smoldering combustion of a porous solid comprised of

spherical particles was presented by Ohlemiller [i]. Packed

bed correlations were used to describe heat and mass

transfer between the particles and the bulk gas. Because the

particle pores are small, the motion of the gas within the



pores is independent of the motion of the gas outside the

pores. Mixing in the bulk gas phase is assumed to be

vigorous enough so that the properties of the gas phase are

uniform over distances comparable to the size of a typical

particle. Consequently, the temperature and species

concentration profiles in the particles are spherically

symmetric. Since energy and species equations must be solved

for each particle present, the primary use of this model is

to elucidate the physics of smoldering combustion. There is

virtually no hope of obtaining solutions to these equations.

Ohlemiller also presented a set of equations governing

smolder propagation for cases in which distances

characteristic of changes in temperature and species

concentration are much larger than the diameter of a typical

particle. The solid and the gas within the pores can be

treated as one component and the gas outside the pores as

the other component. The formulation consists of two energy

equations, one equation for each solid phase species, two

equations for each gas phase species and a momentum

equation.

8

1.3 THE PRESENT CONTRIBUTION

Activation energy asymptotics are used to study forced

cocurrent smoldering combustion in Chapter 2. It is assumed

that the propagation of the smolder wave is one-dimensional

and steady in a frame of reference moving with the reaction

zone. Smoldering is represented using a finite-rate, one-
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step reaction. A non-oxidative pyrolysis reaction can be

included in the analysis. However, for steady smolder, the

presence of such a reaction will have only a small effect on

the temperature profiles. The dimensionless equations are

very similar to those governing the propagation of a laminar

premixed flame. A straightforward extension of premixed

flame analyses [2,33] yields an expression for a

dimensionless eigenvalue, J_, thus providing a relationship

• II pgbetween the initial oxygen mass flux, moi = Yoi _ iui , and

the final temperature, Tf. A global energy balance then

determines the smolder velocity, v. Theoretical predictions

are compared with the experimental findings of Rogers and

Ohlemiller [21] and with the calculations of Ohlemiller et

al [20].

A model of unsteady countercurrent smoldering

combustion propagation is developed in Chapter 3. Smoldering

combustion is represented using a two-step mechanism

consisting of a pyrolysis reaction followed by a char

oxidation reaction. A "flame" sheet approximation is used to

model the oxidation reaction zone and it is assumed

pyrolysis occurs at a known temperature, Tp. Because the two

reaction fronts move at different velocities, countercurrent

smolder propagation is unsteady. Two cases are considered:

(I) no ash residue ; and (2) an ash layer building below the

smolder wave. The residual ash serves as insulation, leading

to much higher peak temperatures. The range of validity of

the solutions is identified and explicit expressions are



I0

derived for the char oxidation velocity, v, the pyrolysis

front velocity, Vp, and the maximum temperature, Tm, in the

limit of long time. Predictions are compared with

measurements by Ohlemiller and Lucca [19].

In Chapter 4, the effect of buoyancy on cocurrent

smoldering combustion is investigated both experimentally

and theoretically. Buoyant forces, which are proportional to

the product, g(_gi-_g), can be controlled experimentally by

varying either the gravitational acceleration, g, or the

density difference, _gi-_g" The latter approach is followed

in the work presented here. By changing the ambient

pressure, the density of the gas and consequently, the

buoyancy force, is varied. The rate of smolder spread

through a packing of alpha-cellulose is measured for air

pressures ranging from 0.5 to 1.2 atmospheres.

A model of cocurrent smoldering combustion under free

flow conditions is also presented in Chapter 4. In one

dimension, the gas velocity is determined from the

conservation of mass - as a function of the inlet gas

velocity, u i. Since the pressure varies by a small amount

over distances comparable the thickness of the smolder wave

[i], the transport equations can be solved before

considering the momentum equation. Explicit expressions for

the smolder velocity, v, and the final temperature, Tf, are

derived by using activation energy asymptotics. Both

eigenvalues, v and Tf, are functions of u i. The quantity,

u i, is then estimated by using an integral momentum
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analysis. The smolder velocity is found to increase as the

ambient pressure was increased. Good agreement between

predictions and experiments is observed.

A series of ground based experiments designed to test

the predictions of the present models are proposed in

Chapter 5. Possible comparisons between measurements and the

theory are discussed. It is anticipated that these

comparisons will establish the range of validity of key

assumptions in the analyses (such as the one-dimensional

propagation approximation) and will hopefully lead to

improvements in the current theory.

ii
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CHAPTER 2

FORCED COCURRENT SMOLDERING COMBUSTION

2.1 INTRODUCTION

A schematic of the problem under consideration is shown

in Fig. 2-1. A gaseous oxidizer with an initial oxygen

concentration, Yoi' an inlet velocity, u i, and an initial

temperature, Ti, flows upwards through a porous combustible

solid with void volume fraction,_. The solid and gas

fractions have initial densities, _si and Pgi, respectively.

Buoyancy is included and shown to be negligible in the

proposed application of a smoldering combustion experiment

for use on the Space Shuttle._A pIanar'ignition source is

used to initiate smoldering at the top of the solid. The

smolder wave propagates downward opposing the upward flow of

oxidizer. Because the oxidizer and the fuel enter the

reaction zone from the same direction, this configuration is

often referred to as cocurrent or premixed-flame-like. While

all of the oxygen is consumed in the reaction zone, a

considerable amount of solid remains [1]. Energy released in

the reaction zone is transferred upstream by conduction and

radiation, providing the energy required to preheat the

solid and the gas.

Smoldering combustion in the cocurrent configuration

has been investigated experimentally using polyurethane foam

[9], cellulosic insulation [19] and alpha-cellulose [23], as

O , INAL PAGE IS
OF POC)R QUALITY
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REGION I: RESIDUAL CHAR AND

GASEOUS PRODUCTS

REGION II: REACTION ZONE

IV (SOLID VELOCITY)

(GAS VELOCITY)

REGION III: UNBURNT SOLID AND AIR

X

g

FIG. 2-1: Cocurrent smoldering combustion viewed in a frame

of reference moving with the smolder wave.
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fuels. The present study is intended to compliment the

earlier work of Ohlemiller et al [20], who developed a large

computer code to investigate unsteady, one-dimensional,

cocurrent smolder propagation in flexible polyurethane

foams. Because their method required expensive finite-

element calculations, Ohlemiller et al concluded that a

primary use of their model was to study the initiation of

smoldering combustion.

A primary goal of this study is to use activation

energy asymptotics to conduct a parametric investigation of

cocurrent smoldering combustion. The dimensionless equations

are very similar to those governing the propagation of a

laminar premixed flame. A straightforward extension of the

premixed flame analysis presented by Williams [2] yields an

expression for a dimensionless eigenvalue, _, providing a

• II

relationship between the initial oxygen mass flux, moi =

Yoi_giUi , and the final temperature, Tf. The smolder

velocity, v, is then determined by balancing the energy

released in the oxidation zone with the energy required to

preheat the solid and the gas from T i to Tf. Both v and Tf

o_

are highly dependent on moi. This is due to the oxygen

limited nature of cocurrent smoldering combustion. That is,

all of the incoming oxygen is usually consumed and the total

energy available is proportional to moi. Theoretical pre-

dictions are compared with the experimental findings of

Rogers and Ohlemiller [9] and with the calculations of

Ohlemiller et al [20]. The influence of buoyancy is
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TABLE 2-I: Typical smolder characteristics.

Quantity o__f Interest Magnitude a

smolder velocity, v _(0.01 cm/sec)

initial gas velocity, u i _iO.l cm/sec)

peak temperature, Tf 350-500 C

smolder wave thickness 2-3 cm

inverse equivalence ratio, req

solid mass flux, msi

,H

gas mass flux, mg i

solid mass fraction, _s

gass mass fraction, £g

_(0.03)

_(0.0004 gm/cm2s)

_(0.0001 gm/cm2s)

_(0.8)

_(0.2)

a. Order of magnitude estimates given in refs.[9,20].



Z6

500 _ m
l .....|
f I

FIG. 2-2a:_Electron microscope photograph of a GM-25

polyurethane foam.



17

.

1.00 /_.m

I {

FIG. 2-2b: Electron microscope photograph of an alpha-

cellulose fuel bed.
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discussed in section 2.5.

2.2 ANALYSIS

2.2.1 Assumptions

Typical values of several key smolder characteristics,

including the smolder velocity, v, and the peak temperature,

Tf, are given in given in Table 2-I. Electron microscope

photographs of two solid fuels, a GM-25 polyurethane foam

and a packed bed of alpha-cellulose, are shown in Figs. 2-2A

and 2-2B, respectively. Both of these materials have been

used in recent experimental investigations [9,20,21,28,29]

of smoldering combustion. The polyurethane foam is composed

of large contiguous bubbles whose diameters are on the order

of several hundred microns. On the other hand, the alpha-

cellulose is formed by interlaced fibers, roughly one-

hundred microns long and ten microns in diameter.

Many fuels of interest are very porous, and consequently,

conduction is a relatively poor mode of heat transfer [19].

Thus, radiation heat transfer is often important despite the

relatively low temperatures encountered in smoldering

combustion - peak temperatures are usually between 350 and

500°C [20]. While radiation is important in polyurethane

foams, it is approximately negligible in tightly packed beds

of alpha-cellulose. In the following analysis, a diffusion

approximation is utilized to model radiation heat transfer.

That is, the radiation heat flux is incorporated using a

temperature dependent conductivity [34-36].



Smoldering combustion is represented by a finite rate,

one-step reaction,

Qus(Unburnt Solid) + 9002

9aASh + _gp(Gaseous Products) + Q goMo o (2-1)

Reaction mechanisms for alpa-cellulose, GM-25 polyurethane

foam, wood dust and cellulosic insulation are discussed in

Appendix A. Ohlemiller and Lucca [19] reported that a one-

step oxidation reaction adequately describes the cocurrent

smoldering of cellulosic insulation materials. Ohlemiller et

al [20] modelled the smoldering combustion of a polyurethane

foam by utilizing two global reactions,

_us(Unburnt Solid) + _olO2---_

9cChar + _gpl(Gaseous Products) + Q_olMol

and

(2-2)

)

_cChar + _o202

9aASh ÷ _gp2(Gaseous Products) ÷ Q_o2Mo2 (2-3)

However, since the second reaction (oxidation) was much

faster than the first reaction (pyrolysis), their two step

reaction mechanism can be well approximated by Eq.(2-1). The

following asymptotic analysis can be modified to include a

non-oxidative pyrolysis reaction. Because the amount of

energy consumed by pyrolysis is much smaller than the amount

released in the reaction zone, for steady smolder, the

z9
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presence of such a reaction will have a small effect on the

temperature profiles.

Additionally, the solid phase is considered continuous

with a constant void volume fraction. Propagation of the

smolder wave is assumed to be one-dimensional and steady in

a frame of reference moving with the smolder wave. Fick's

Law is used to model the diffusion of oxygen. The gas and

the solid are presumed to be in local thermal equilibrium. A

criterion for checking the validity of this equilibrium

approximation is derived in Appendix B. Energy transport due

to concentration gradients, energy dissipated by viscosity,

work done by body forces and the kinetic energy of the gas

phase have been ignored. Because the mass diffusivity of

oxygen in air, D, increases with temperature and decreases

with pressure [37], the quantity, pgD, is taken to be

constant. It is also assumed that properties, such as the

gas phase thermal conductivity, kg, the solid phase thermal

conductivity, k s , the gas phase specific heat, Cg, and the

solid phase specific heat, c s, remain constant.

2.2.2 Governing Equations

Equations governing heat and mass transfer in a porous

medium are derived in Appendix C. In a frame of reference

moving with the smolder wave, ms= (I-_)_s v . Since the

smolder velocity is usually at least an order of magnitude

smaller than the gas phase velocity [9,19,20], m_ _ _gU .

• I!

This assumption allows moi to be treated as a known

quantity. The conservation of mass requires that m (=ms÷mg)
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remain constant. Mass flux fractions are defined by:

• tl

° ii

(2-4)

(2-5)

_ °

Symbols are defined in the nomenclature. Equation (2-1)

gives

Species conservation for oxygen requires

(2-6)

(2-7)

: _ (2-8)

and integrating the conservation of energy gives

(2-9)

where Eq.(2-8) has been used to eliminate the reaction rate

from Eq.(2-9). The effective thermal conductivity, keff=

kg+(l- _)k s, accounts for heat transfer due to conduction

in both gas and solid phases. Radiation heat transfer is

incorporated using a temperature dependent conductivity,
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TABLE 2-11: Typical properties of a polyurethane foam and a

packed bed of alpha-cellulose.

_si [kg/m3]

c s [kJ/(kg K)]

kef f [W/m K]

krad(Ti) [W/m K]

E [kJ/mole]

Q [kJ/kg]

Z

a

b

c

polyurethane a alpha-cellulose c

0.97 0.90

1150 620

1.7 0.84

0.047 0.050

0.005 0

155 (140) b 180

12,300 (7,600) 12,500

1010m3/kg s 3 X 106ml'5/kg0"5K0"5s

1 0.5

1 1

0 0.5

a. Properties given in refs. [20,39]. The value given by
Ohlemiller et al [20] is shown in parenthesis whenever it
differs from the value listed above.

b. Shown in the parenthesis is the activation energy for the
first reaction in the two-step model in ref. [20].

c. Properties given in refs. [21,28,40].
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krad=164"_rT3/3.- For simplicity, it is assumed that an

effective heat capacity, Ceff= 6sCs + _gCg, remains constant.

• m!
The reaction rate, r , is assumed to depend on the

oxygen mass fraction, the solid fuel present and the

temperature in an Arrhenius form,

e. , (2-io)

where a,b and c are arbitrary constants. The oxygen mass

fraction is determined from the definition of the oxygen

mass flux, Eq.(2-6). The conservation of momentum, which is

discussed in the appendix, and an equation of state, P=_gRT,

complete the preceding set of equations. Because the

pressure varies by a small amount [i], the transport

equations can be solved before considering the momentum

equation. Properties of a polyurethane foam and a packing of

alpha-cellulose are given in Table 2-II.

The following boundary conditions are imposed on

Eqs.(2-6,2-8,2-9):

_ X -_P - oO _o -_ Eo L (2-11)

I
(2-12)

Two boundary conditions are imposed on Eq.(2-6). The second
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TABLE 2-III: Dimensionless parameters governing forced

cocurrent smoldering combustion. In addition to the

following parameters, req, a, b, and c must be specified.

Dimensionless measure of

the energy released in the

reaction zone (varies from

0 to 40)

Le - ke+_Ti
Modified Lewis number

(varies from 0.05 to

infinity)

Dimensionless radiation

conductivity (usually less

than 0.i)

Measures the amount of gas

produced in the reaction
zone (varies between 0.i

and 1.0)

Dimensionless activation

energy (varies between 50
and 70)

%moZ _,_) _ h rl_> Dimensionlesspre-exponential factor

.......,I (usual_)lies between 108
_o_ (_'_ L_3 _ and i0



boundary condition, which requires that all of the incoming

oxygen be consumed, will determine Tf . Setting T=Tf, _o=0

and dT/dx=0 in Eq. (2-9) gives

• tl

V : ....... (2-13)

After solving for Tf, Eq.(2-13) will determine v.

2.2.3 Dimensionless Governing Equations

A characteristic distance, Xc= keff/_I/Ceff, is chosen

by balancing convection and diffusion in the energy

equation, thus eliminating one dimensionless parameter.

• I!

Typically, kef f _0.05 W/m K, m _0.005 kg/m2s, and Cef f _I

kJ/kg K, giving x c_ 0.01 m. Because the definition of x c

does not account for radiation, x c is somewhat smaller than

the smolder wave thickness given in Table 2-I. Since all of

the oxygen is consumed, the oxygen mass flux and the oxygen

mass fraction are normalized by their initial values. A

dimensionless temperature is defined by T= (T-Ti)/T c.

Setting Tc= T i eliminates the parameter, Tc/T i, which arises

from the nonlinear terms in the governing equations. This

choice for T c also makes T an O(I) quantity - see Table 2-I.

The dimensionless parameters governing cocurrent

smoldering are listed in Table III. Parameter ranges given

in Table 2-III were estimated from the properties tabulated

in Table 2-_I. Note that the asymptotic analysis is only

valid when the Zeldovich number, _ = _f/(l+_f) 2, is large

(_>I0) [2], roughly corresponding to _I>50. The

25
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dimensionless radiation conductivity, NR, is artificially

low because it is based on T i rather than Tf. A critical

value of the dimensionless heat release, Dc, below which

steady solutions cease to exist, will be identified.

Dividing Eqs.(2-6 and 2-8) by Eq. (2-9) eliminates the

spatial coordinate, x. In terms of the new coordinate, T,

the governing equations are

and

(2-15)

The dimensionless reaction rate is given by

- [ " (2-16)

where

m

In terms of T, the boundary conditions are:

o (2-19)

After solving Eqs.(2-14 and 2-15), the spatial coordinate,
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x(T), is determined by

0_]--.--- - 1 • (2-20)

Eq.(2-13) gives a relationship between a dimensionless

smolder velocity, "_=v/v c, and the dimensionless final

temperature,-_f=(Tf-Ti)/T i,

- 1 I
V _ _ - -- (2-21)

where a characteristic smolder velocity,

• ii
O, I_%o _, (2-22)

is chosen by balancing the energy released in the reaction

zone and the energy required to preheat the solid, thus

eliminating one parameter from the above equation.

2.3 ACTIVATION ENERGY ASYMPTOTICS

Typical values of the Zeldovich number, _ , encountered

in smoldering combustion are fairly large. From the argument

of the exponential in Eq.(2-16), the reaction rate is

significant only when I- _-i< _/_f_ I, corresponding to the

(inner) Region II in Fig.l. The outer region consists of the

point _= Tf, Region I in Fig.l, and Region III in Fig.l,

_/_f _ i- _-i In the outer regions, the reaction rate is0!

negligible and diffusion is balanced by convection. Because
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the inner region is very thin, diffusion dominates

convection, and consequently, the source terms in the

governing equations are balanced by diffusion.

In Region III, _0 and Eq.(2-14) yields 6 o =l-

Substituting _o=i into Eq.(2-15) and integrating once gives

For NR=0, Eq.(2-23) gives To= i-_ Le. Note that the integral

in Eq.(2-23) diverges as T 90. Therefore, Yo _I as T_0. A

stretched variable is defined, _ = _ (l-_/_f). Expanding _o

and T o in terms of I/_ gives

and

(2-24)
)

(2-25)

Matching conditions are:

--0

(2-27)

In the inner region, Eqs.(2-14,2-15,2-16,2-17) yield

(to leading order)

and
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A

_4

20

l
°"o°1o o.s _.0

INVERSE EQUIVALENCE RATIO, reg

FIG. 2-3: The function f(b,req) plotted versus the inverse

equivalence ratio, req, for various values of b.
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Integrating Eq.(2-29), substituting the resulting expression

into Eq.(2-28), applying the matching conditions and

integrating once yields

A _ - (2-30)

where

! tat

Because the oxygen consumption of a typical smolder wave is

only a few percent of that required for stoichiometeric

burning, the inverse equivalence ratio, req= _usMus _oi /

oMo6us i, is fairly small [19,20]. As shown in Fig. 2-3,

f(b,req) #1/2 in the limit req_ 0.

2.4 GENERAL SOLUTION

2.4.1 Fields

Because all of the incoming oxygen is consumed in the

reaction zone, the total heat release is proportional to the

initial oxygen mass flux, moi. Both the smolder velocity, v,

• i#

and the final temperature, Tf, are highly dependent on moi.

Since _f appears in Eqs.(2-14,2-15,2-16,2-20), varying moi

affects the dimensionless oxygen mass fraction, _o(T), the

dimensionless oxygen mass flux, 6o(T), and the
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FIG. 2-4: Dimensionless oxygen mass fraction, _o=Yo/Yoi ,

versus normalized temperature, T/Tf, with NR--0.I,_=60,_=10 I0,

a=l, c=0 and req=O. Also plotted is the dimensionless oxygen mass

flux, To = 6o/_o i, versus _/_f, for a=l and req=0. The

dimensionless parameters are defined in Table 2-11I.
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dimensionless distance, _(T). These profiles depend on Le,

N R, req, _ 2_ , a, b and c. Since req is usually small, the

various profiles are weakly dependent on req and b. Results

presented in the following discussion are for the limit req_

0, and consequently, the solutions are independent of both

req and b.

When Go is plotted as a function of normalized

temperature, _/{f, the resulting curves depend on only two

parameters, the Zeldovich number, _ = _'_f/(l+_f) 2, and the

constant, a. As evidenced by Fig. 2-4, the incoming oxygen

is consumed in a narrower region as _ is increased. Also

plotted in Fig. 2-4 is T o versus _/_f, parameterized in Le,

. N 0 I0 a=l and c=0. The modified Lewisfor NR= 0 i, 2_ = 1 ,

number, Le, measures the thermal thickness relative to

oxygen diffusion thickness. The preceding analysis only

valid when the diffusion thickness is much larger than the

thickness of the reaction zone, roughly corresponding to

Le << _. When Le N_ , the dimensionless oxygen mass fraction

is O(i) in the reaction zone and smoldering is kinetically

controlled [38]. For polyurethane, with ui=0.2 cm/s and Pa=l

atm, the criterion for diffusion controlled smoldering is

Yoi>>0.02. For a packed bed of alpha-cellulose, the

criterion is Yoi>>0.0i.

After ascertaining the dependence of _o on T, Eq.(2-

20) is utilized to determine T as a function of the

dimensionless distance, x. Typical temperature profiles,
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parameterized in N R and ^/_, for _]i= 109 , a=l and c=0, are

shown in Fig. 2-5. Raising the dimensionless radiation

conductivity, N R, decreases the final temperature and

increases the thermal thickness of smolder zone. On the

other hand, increasing _ leads to greater final

temperatures. Note that _o(_) and _o(_) can be constructed

by combining Figs. 2-4 and 2-5. Results from such a

calculation are shown in Fig. 2-6.

At this point in the analysis, quantities of secondary

interest, such as the gas phase velocity, u i, can be

calculated. Integrating Eq.(2-7) and utilizing Eqs.(2-4,2-

ii) gives

(2-32)

where a normalized gas velocity, _= u/ui, has been defined.

Over most of the domain, _ increases linearly with _ due to

gas phase expansion. However, as _ approaches Tf,

increases dramatically because of gas generation in the

reaction zone. In the limit req_ 0, _ depends on four

parameters, _', a, Pg, and _f. Setting _--_f and Eo=0,

Eq.(2-32) yields

(2-33)

35
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thus determining the final velocity, uf.
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T

A

|

DIMENSIONLESS PRE-EXPONENTIAL, _X 10 -1°

u

FIG. 2-7: Dimensionless final temperature, Tf=(Tf-Ti)/T i,

versus the dimensionless pre-exponential factor,_ , with a=l,

c=0, and req=0.
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FIG. 2-8: Downstream temperatures in polyurethane predicted

by the present analytic model, for the properties listed in Table

2-II (---) and those given by Ohlemiller et al (-.-), measured by

Rogers and Ohlemiller and calculated by Ohlemiller et al (O)-

Measurements are for the following conditions: ui=0.04 cm/s, Yoi=

0.23 (+) and Yoi=0.44 (A)7 ui=0.15 cm/s, Yoi=0.44 (x). Also

shown in the figure are predictions for cellulose (--).
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2.4.2 Final Temperature and Smolder Velocity

A key result of this analysis is _f(N R, t,_,a,c). In

the limit req_ 0, Eqs. (2-30 and 2-31) give

DI/. __%I

2
(2-34)

A plot of _f=(Tf-Ti)/T i versus 3_, parameterized in the

dimensionless activation energy, _!, and the dimensionless

radiation conductivity, N R, for a=l and c=0, is shown in

Fig.2-7. As the reaction rate is increased, by either

raising the pre-exponential, 2_, or lowering the activation

energy, _', _f decreases and the smolder velocity, _, which

is inversely proportional to _f, increases. That is, the

material burns faster when the reaction rate is higher.

For a given fuel, _f decreases logarithmically with J_.

Therefore, Tf increases logarithmically with the initial

, i!

oxygen mass flux, moi, as shown in Fig. 2-8. Also indicated

are measurements by Rogers and Ohlemiller [9] and

calculations by Ohlemiller et al [20] for polyurethane.

Ohlemiller et al attributed the discrepancy between their

predictions and experiments to uncertainty in the base

parameter set (see Table 2-II). When their parameters are

used in this model, as shown by the dot dash line in Fig. 2-

8, predicted values of _f are close to those calculated by

Ohlemiller et al. Results from this study indicate that the

parameters in Table 2-II are a better choice, for they give

much closer agreement between predictions (solid line) and
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FIG. 2-9: Dimensionless smolde: velocity, _+I/D c, versus the

dimensionless pre-exponent£al, A , for polyurethane. Smolder

velocities predicted by the present analytic model (--), measured

by Rogers and Ohlemiller (A) and calculated by Ohlemiller et al

(+) are shown.
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measurements. The dashed line in Fig. 2-8 gives the final

temperature for alpha-cellulose.

As shown in Eq.(2-21), the dimensionless smolder

velocity depends only on D c and Tf. The dimensionless

parameter, D c, which measures the total energy released in

the reaction zone relative to the amount of energy required

to raise the temperature of the gas from _i to _f, contains

the experimentally observed dependence of _ on Yoi" For a

given fuel and a fixed initial oxygen mass flux, moi,

increasing Yoi raises D c, leading to higher smolder

velocities. This dependence of_ on D c is fairly weak except

near extinction. For Yoi near 0.23, D c is on the order of 10

m

and therefore, as a first approximation, _- i/Tf. Because Tf

, • II

_" varles slowly with moi, v is approximately proportional to

4 II ,1!

moi (recall that v cNmOi ). Figure 2-9 illustrates the

dependence of _ on A for polyurethane. Overall, there is

good agreement between the smolder velocities predicted by

this model and those measured by Rogers and Ohlemiller [9].

Extinction occurs when _=0, corresponding to _f- D c-

That is, extinction occurs when all of the energy released

is used to heat the incoming gas. Steady smoldering

combustion is possible only when Yoi_Ceff(Tf-Ti)/Q. For

polyurethane, with ui=0.2 cm/s and Pa=l atm, this criterion

requires that Yoih0.05. While for alpha-cellulose this

criterion is Yoi_0.03. Note that the presence of heat losses

from the sides of the cylinder will raise this critical

value of Yoi" When the smolder wave is close to the top of
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the material, heat losses from the top will also have an

important effect on the extinction criterion [20].

2.5 INFLUENCE OF BUOYANCY

Because the temperature field and hence the buoyancy

varies as the smolder wave spreads, u i may not be known a

priori. The quasi-steady conservation of momentum for this

system is

(2-35)

Integrating Eq.(2-35) yields

k-L

(2-36)

where h is the length of region I in Fig. 2-1, L is the

total length of regions I-III and _P=Pi-Pf is the pressure

drop across the solid, excluding changes in hydrostatic

pressure. While the flow resistance, a d, is lower in the

char layer_ the"gas velocity, u, is higher. Therefore, it is

assumed that the quantity adu remains approximately constant

at adu i. A step change in #g from _gi to _gf occurs at x=0.

The initial velocity is then approximated as

m m

Buoyancy can be neglected when gfgih/ AP<< (l+Tf)/Tf. At
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kg/m 3STP, pgi_l and Tf _i, so that at sea level, with g=

9 8 m/s 2• , _ P/h>> 5 Pa/m suffices while in orbit, with g =

10 -3 m/s 2, _P/h>> 5x10 -4 Pa/m will suffice. On the other

hand, for polyurethane, buoyancy is negligible if the forced

ui>> 4xl0-4m/s at sea level and if ui>> 4xl0-Sm/s in orbit.

When _P/g_gih<< _f/(l+T-f), ui--g_gi" Since the smolder

velocity is proportional to the oxygen mass flux, v _

YoifgiUi/_Yoig_gi . This result agrees with the experimental

finding (see Chapter 4) that v is proportional to Pa for

buoyancy driven systems.

2.6 CONCLUSIONS

An analytic model of cocurrent (premixed flame-like)

smoldering combustion propagation has been developed.

Buoyancy was included and shown to be negligible in the

proposed application of a cocurrent smoldering experiment

for use on the Space Shuttle• Because of the microgravity

environment, propagation of the smolder wave was assumed to

be one-dimensional and steady in a frame of reference moving

with the smolder wave. Radiation heat transfer was

incorporated using a diffusion approximation and smoldering

was modelled using a one-step reaction mechanism.

Key results include: (i) for a given fuel, the final

temperature depends only on the initial oxygen mass flux,

moi, increasing logarithmically with moi ; (2) the smolder

I! • II

velocity, v, is linearly dependent on moi and at fixed moi,

increasing the initial oxygen mass fraction, Yoi' increases



v ; and (3) steady smolder propagation is possible only for

YoilCeff(Tf-Ti)/Q, with extinction occurring when all of the

energy released in the reaction zone is used to heat the

incoming gas.

The preceding analysis can be modified to allow for

several second order effects. Heat losses from the sides of

the cylinder will affect the extinction criterion,

increasing the critical value of Yoi below which steady

solutions cease to exist. When properties are allowed to

vary, the equations determining v and Tf will still be

valid, with the properties appearing in these equations

evaluated at Tf [2,33]. As discussed earlier, a non-

oxidative pyrolysis reaction can also be included in the

analysis. However, for steady smolder, the presence of such

a reaction will only have a small effect on the temperature

profiles.
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CHAPTER 3

FORCED COUNTERCURRENT SMOLDERING COMBUSTION

3.1 INTRODUCTION

Schematics of the problems under consideration are

presented in Figs. 3-1A and 3-1B. A gaseous oxidizer, with

an oxygen concentration, Yoi' and an inlet velocity, u i,

flows upward through a porous combustible medium which has a

void volume fraction, _. The solid and gas fractions begin

with densities, Psi and _gi' respectively. At t=0, both the

solid and the gas are at a uniform temperature, T i-

Smoldering is initiated at the bottom of the material by

applying an external heat flux, qe' for 0<t<t e. The smolder

wave propagates upwards, in the same direction as the forced

flow of oxidizer. In a frame of reference moving with the

smolder zone, the solid and the oxidizer enter the reaction

region from opposite directions. Consequently, this

configuration is referred to as countercurrent or diffusion-

flame-like. It is also called forward smolder since the

reaction zone moves in the oxidizer flow direction.

A model of unsteady, forced, countercurrent smoldering

combustion propagation is presented in this chapter.

Smoldering combustion is represented with a two-step

reaction mechanism consisting of a char oxidation reaction

and a pyrolysis reaction. A "flame" sheet approximation is

used to model the oxidation reaction zone and it is assumed



45

REGION I: UNBURNT SOLID

I
L

l
REGION II: CHAR

Pyrolysis Front

Iv Char Oxidation Front

X

REGION III: AIR

I U i (air flow velocity)

FIG. 3-1A: Schematic of countercurrent smoldering for

Case I (no residual ash).
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REGION I: UNBURNT SOLID

%21.

REGION II: CHAR

Pyrolysis Front

Char Oxidation Front"

×

h REGION III: RESIDUAL ASH

REGION IV: AIR

0 i (air flow velocity)

FIG. 3-1B: Schematic of countercurrent smoldering for

Case II {an ash layer building below the smolder wave).



pyrolysis occurs at a known temperature, Tp. Because the two

reaction fronts move at different velocities, countercurrent

smolder propagation is unsteady. Two cases are considered:

no ash residue (see Fig. 3-1A), 9aMa=0, and an ash layer

building below the smolder wave (see Fig. 3-1B), _aMa_0. The

residual ash serves as insulation and its presence leads to

higher peak temperatures. The range of validity of the

solutions is identified and explicit expressions are

derived, in the limit of long time, for the char oxidation

velocity, v, the pyrolysis front velocity, Vp, and the

maximum temperature, Tm.

3.2 ANALYSIS

3.2.1 Assumptions

The scenario depicted in Fig. 3-1 is not a realistic

representation of the countercurrent smoldering combustion

of all solid fuels. Some solids will collapse downwards as

the smolder wave propagates. In this study, it is assumed

that the solid remains stationary in a frame of reference

fixed in the laboratory. If the fuel consists of small,

loosely packed, solid particles, this assumption is only

valid in a microgravity environment. Smoldering combustion

is represented by a two-step reaction mechanism,

_us(Unburnt Solid) ÷ Qp@usMus _

_cChar + _gpl(Gas Products) (3-1)

)
and
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QcChar + QoO2---_

Qgp2(Gas Products) ÷ QaASh ÷ Q_oMo (3-2)
J

where Qp is the energy required to pyrolyse one gram of

unburnt solid and Q is the energy released per gram of 02

consumed. Char oxidation is modeled using a "flame sheet"

assumption. It is assumed that the pyrolysis reaction occurs

at a known temperature, Tp. This is a reasonable

approximation for many solids of interest [41,42,44]. For

alpha-cellulose, Tp= 300°C [41]. Alternatively, pyrolysis

can be modeled using Arrhenius-type kinetics [24,25,41].

Such an approach leads tonumerical calculations and

requires the specification of kinetic constants whose values

are sometimes ambiguous [41].

The char oxidation zone moves at a constant speed, v,

which is determined by the rate at which oxygen reaches the

reaction region, while the pyrolysis front moves at a

velocity, Vp, which is several times larger than v. Because

the pyrolysis reaction is endothermic [i], motion of the

pyrolysis front is highly dependent on heat transfer from

the oxidation zone, where the energy required to sustain

smoldering is released. Energy is transferred to the

pyrolysis zone by conduction, radiation and gas phase

convection. Typical values of several smolder

characteristics, including the maximum temperature, T m, the

oxidation velocity, v, and the pyrolysis speed, Vp, are

given in Table 3-I.

48
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TABLE 3-I: Order of magnitude estimates for several smolder

characteristics.

Quantity of Interest

forced gas velocity, u i

oxidation velocity, v

pyrolysis front velocity, Vp

maximum temperature, T m

Magnitude a

(1-5) X 10 -3 m/sec

(1-3) X 10 -5 m/sec

(5-15) X 10 -5 m/sec

800-900°K

a. Measurements by Ohlemiller and Lucca [19].

Because the solid fuel and the gaseous oxidizer enter

the oxidation zone from opposite directions, all of the char

is consumed in accordance with Eq.(2) before the oxidation

zone moves forward. Therefore, the oxidation velocity, v, is

proportional to the initial oxygen mass flux, with the

proportionality constant determined by stoichiometry

[1,19]. Because v is several orders of magnitude smaller

than the gas velocity, u i, the oxygen mass flux in a frame

of reference moving with the oxidation zone is

approximately, Yoi_PgiUi [16]. Thus,

(3-3)
V :

9o C%-

Typically, Yoi~0.23, u i _ 0.005 m/s, Pgi _I kg/m 3, and (i-_)

_si _ 40 kg/m 3, resulting in oxidation velocities on the

order of 10 -5 m/s. For the same conditions, smolder



velocities encountered in cocurrent smoldering are more than

50 times larger [19]. In a frame of reference moving with

the oxidation zone, the gas phase mass flux, _, is an order

• II

of magnitude larger than the solid phase mass flux, m s-

Setting Yoi=0.23 and representing oxidation with the

-it -tl

reaction, C+02_C02, Eq. (3-3) yields ms/mg_0.08. Neglecting

terms involving m_ considerably simplifys the governing

equations. Also, since the solid density based on total

volume, (i- _)_i" is much greater than _gi' the energy

stored in the gas phase is negligible when compared with

that stored in the solid phase [20,24].

Additionally, the solid phase is assumed continuous

with a constant void volume fraction. The propagation of the

smolder wave is approximated as one-dimensional. Fick's Law

is used to model the diffusion of oxygen. Radiation heat

transfer is incorporated using the diffusion limit. The gas

and the solid are assumed to be in local thermal

equilibrium. Energy transport due to concentration

gradients, energy dissipated by viscosity, work done by body

forces and the kinetic energy of the gas phase have been

ignored. The quantity, pgD, is taken to be constant. This is

a reasonable assumption because the mass diffusivity of

oxygen in air, D, increases with temperature and decreases

with pressure [37]. It is also assumed that properties, such

as the gas phase thermal conductivity, kg, the solid phase

thermal conductivity, ks , the gas specific heat, Cg, and the

solid specific heat, c s, remain constant.

5O



2.2 CASE I: No Residual Ash

2.2.1 Governin@ Equations

After the initiation of smoldering, the coordinate

system moves with the char oxidation region. In this moving

frame of reference, solutions are steady in Region III (x<0)

in Fig. 3-1A. For x>0 (Regions I and II in Fig. 3-1A), the

conservation of energy requires

51

(3-4)

where the effective thermal conductivity, keff= _kg+

(i- _)k s, accounts for heat transfer due to conduction in

both phases. Radiation heat transfer is incorporated using a

temperature dependent conductivity, krad=16_-_rT3/3, where
6_

_r is the radiation path length. For x<0 (Region III in

Fig.3-1A),

(3-5)

Since all of the oxygen is consumed, Yo=0 for x>0. For x<0,

conservation of species for oxygen yields

Conservation of gas mass gives

(3-6)

" O (3-7)



where H(x) is the Heaviside function, which vanishes for x<0

and is equal to 1 for x>0. Noting that all of the incoming

solid is consumed in the oxidation zone, Eq.(3-1) yields

¢0 fro,. x .o

(3-8)

Because the pressure changes by only a small amount for

these very porous systems [I], the ideal gas law gives

_gRT=P a, thus completing the preceding set of equations.

The following boundary conditions are imposed on

.II • ,I

Eqs.(3-4 to 3-7): as x_-Oo, T _T i, Y_Yoi and mg_ mg i ; as

x_+oO, dT/dx_0. The temperature is continuous across both

•- ..H • i, is approximately continuousinterfaces. Because ms<<mg, mg

across both interfaces. It is assumed that smoldering begins

when the temperature of the x=0 interface reaches a critical

value, Tig>Tp>T i. However, only an approximate value for Tig

is needed since the solutions are independent of the initial

conditions as t_DO . Conservation of energy at the x=0

interface gives

_X _:o" X-o-
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m

X:O

where Tm is the temperature at x=0. Thus, the maximum

temperature, Tm, is determined by balancing the energy

transported downstream, by conduction and radiation, and the



energy conducted upstream, radiation heat losses from the

x=0 interface, the energy released in the oxidation zone and .

the external heat flux. Motion of the pyrolysis front is

calculated by equating the energy consumed by pyrolysis and

the net energy transported to the pyrolysis zone, giving

1
Y,:L"

(3-i0)

where Vp= dL/dt÷v and L is the distance between the two

reaction regions. Initially, both the temperature and the

oxygen concentration are uniform. That is, T(x,0)=T i and

Yo (x'0)= Yoi" After smoldering is initiated, Yo(0,t)=0.

2.2.2 Dimensionless Governin@ Equations

A dimensionless temperature is defined by T=(T-Ti)/T c-

Setting Tc=T i makes T of order one and eliminates the

parameter, Tc/T i, which arises from the nonlinear terms in

the governing equations. The oxygen mass fraction, Yo' the

gas density, _g, and the gas mass flux, m;, are normalized

by their initial values. A characteristic distance,

5]

Kef(

"Ac : • ,l

and a characteristic time,

KeF

are chosen by balancing terms in Eq. (3-4). Typically,

(3-11)

(3-12)
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ui_0.005 m/sec, Pgi_l kg/m 3, (i-_)_si_ 40 kg/m 3, Cs_Cg

1 kJ/kg K, and keff_ 0.05 W/m K, giving x c_0.01 m and tc_

80 sec. Thus, the ratio, Xc/t c_0.013 cm/sec, is of the same

order as Vp (see Table 3-I). This is to be expected because

Vp is determined by heat transfer considerations and both x c

and t c were chosen to make terms in the energy equation of

order one.

For _>0, conservation of energy requires

and for _<0,

Since all of the oxygen is consumed,_o=0

conservation of species for oxygen yields

(3-13)

(3-14)

for _>0. For'x<0,

54

Conservation of gas mass requires

Equation (3-8) yields

t - 11-- 0 6o, E _o

)
Tro- E>O

(3-15)

(3-16)

(3-17)
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TABLE 3-II: Dimensionless parameters governing forced

countercurrent smoldering combustion. In addition to the

following parameters, the void volume fraction, , the

irradiation time, t_,_ the ignition temperature, Tig, and the

pyrolysls temperature, Tp, must be specified.

Dimensionless measure of the heat

released per mass of oxygen

consumed (varies from 0 to 20)

Dimensionless measure of the

energy consumed by pyrolysis

(varies from 0.25 to i)

/L
i

Dimensionless thermal thickness

in Region III (varies from 0.5

and 0.7)

NR:
3  e;f

• i!
_e

Modified Lewis number (usually

lies between 1.9 and 3.0)

Dimensionless radiation

conductivity (less than 0.i)

External heat flux measured

relative to the total energy
released in the reaction zone

Dimensionless measure of the

energy radiated to the

surroundings (varies from 0.005

to infinity)

------ Stoichiometric coefficient - ash

Stoichiometric coefficient - char

(varies between 0.3 and 0.4)
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TABLE 3-II: (cont.)

_° Mo c5
Dimensionless char oxidation

velocity (varies from 0 to i)

Gas phase response time divided

by the solid phase response time

(less than 0.04)



In dimensionless form, the ideal gas equation of state is

g(l+_)=l. The dimensionless smolder velocity, v= Vtc/Xc,

equals V after the onset of smoldering and is zero

beforehand.

The following boundary conditions are imposed on Eqs.

(3-13 through 3-16): as _-Q0, _ 40, _o-_i and _g_ 1 ; as

x_ + oo , dT/dx _0. Both temperature and the gas mass flux

are continuous across the interfaces. Conservation of energy

across the x=0 interface gives
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where T% is the temperature at _=0. The temperature of the

pyrolysis zone is held fixed, _(_,[)= _p, and the motion of

this front is determined by

P _-L* x--C "

Initially, _(_,0)= 0 and Yo(X,O)= 1. After smoldering is

initiated, Yo(O,t)=O.

The dimensionless parameters appearing in the preceding

equations and typical values of these parameters, estimated

from properties provided in the literature [19,20,45-48],

are given in Table_-II. The quantity, _, represents the



ratio of the gas phase response time to the solid phase

response time and is always less than 0.04 for the fuels of

interest. As discussed in the following section, this fact

leads to considerable simplification in the governing

equations because solutions in Region III in Fig. 3-1A are

steady when _ is small.

2.2.3 Quasi-Steady Equations

Terms in Eqs.(3-14 through 3-16) involving time

derivatives can be neglected because _ is always less than

0.04. This result is in agreement with the findings of

Ohlemiller and others [i,20,24], who reported that the gas

phase can be considered quasi-steady in many smoldering

combustion applications. Setting _ equal to zero in Eq.

(3-16), integrating once, and combining with Eq.(3-13),

Equation (3-14) yields an explicit expressions for the

temperature in Region III in Fig. IA (_<0),

(3-21)

After smoldering is initiated, Eq. (3-15) gives

(3-22)

58
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Combining Eqs. (3-18,3-21,3-22) ,

, 1-]

Equation (3-23) determines _m while _p is given by

Eq.(3-19).

2.3 CASE If: Ash Layer Building Below Smolder Wave

After the initiation of smoldering, the coordinate

system moves with the char oxidation zone. As the oxidation

front propagates upward, an ash layer of height, h(t)=vt,

builds below the smolder wave - see Fig. 3-1B. Because the

governing equations for Case II are very similar to those

for Case I, only dimensionless equations are presented in

this section. Relevant dimensionless variables are defined

in the preceding section and the dimensionless parameters

appearing in the following equations are listed in Table II.

As discussed previously, the gas phase response time is much

smaller than the solid phase response time (that is, _<<i).

Consequently, the temperature in Region IV in Fig. 3-1B, the

oxygen concentration, and the gas phase mass flux profiles

are steady. Conservation of energy in Regions I through III

in Fig. 3-1B gives

(3-24)
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while in Region IV,

_/_
(3-25)

i w

The temperature at _=--h, Th(t), will be determined by

applying the conservation of energy at the _=--h interface.

After smolder initiation, conservation of species for oxygen

yields

1_ _./_ e (.'_r T,')Le
2

Equations (3-1,3-2) determine the solid density,

(3-27)

The following boundary conditions are imposed on

Eq.(3-24): as ;._-oo, _r0 ; as _-_+ O, d_/dx %0. The

temperature is continuous across all of the interfaces.

Before smolder initiation, conservation of energy across the

m

x=0 interface requires

_-o _'

-Q_._,oHI__-_3 . (3-26)
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1.8
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_m _ IN _ iN me m m _ ....

! .8

DIMENSIONLESS TIME, _ = t keff/11- _1 _ .x 2sl G

FIG. 3-3: Normalized maximum temperature, Tm(t)/%(OO),

versus dimensionless time, _, for: (i) the external heat flux

q

turned off at t=te=l (--) ; (2) the external heat flux turned off

immediately after smolder initiation (--). With Dco=12, Dcp=0.3 ,

=0.7, NR=0, QE=I, OR=0.02, Sc=0.3 , V=0.2, and T"p=Tig=l.



After initiation, conditions at _=-_ andx=0 are

and

K-o't

- Q,_"D o
..%

w

respectively. Equations (3-29,3-30) determine T h and T m-

Motion of the pyrolysis front is still governed by

Eq.(3-19). Consideration of an ash layer introduces one

additional parameter, s a.

(3-30)
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3.3 SOLUTIONS

3.3.1 CASE I: NO Residual Ash

Techniques for solving partial differential equations

with moving interfaces have been developed within the

context of freezing and thawing in cold climates [44] and

the charring of solids during a fire [41]. The time-explicit

finite difference scheme presented by Lundarini [44] is

utilized to solve Eqs.(3-20,3-21,3-24). Temperature profiles

after the onset of smoldering for typical values of the

dimensionless parameters are shown in Fig. 3-2. The maximum

_m' reaches a steady value before t=2.5. Atemperature, plot

Tm(_)/_m(OO) is given in Fig. 3-3 for two cases: (i) theof
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m

FIG. 3-4: Setting T equal to the dimensionless maximum

temperature, Tm' gives _m versus dimensionless radiative losses,

QRDco , parameterized in the dimensionless heat release, Dco.

m

Setting T equal to the ignition temperature, Tig, and replacing

Dco with QE,minDco (the minimum external heat flux that will

produce smoldering) gives Tig versus QRDco for various QE,minDco .
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external heat flux is turned off at t=te=l.0 (solid line)

(2) the heat flux is turned off immediately after smolder

initiation (dashed line). Radiation and conduction heat

transfer from the oxidation zone to the pyrolysis front

becomes small when the dimensionless distance between the

two reaction regions is large - that is, when L>>I.

Neglecting terms on the left hand side of Eq.(3-23), as

t _oo,

Because QRDco is usually greater than 0.15 and_m--2, the

first term on the left hand side of the above equation is an

order of magnitude larger than the second and consequently,

_m_O_i/4-1, or in dimensional form, Tm_(Om_i/ _ )i/4. Thus,

as a first approximation, the peak temperature is determined

by balancing the heat released in the reaction zone and

radiation heat losses from the x=0 interface. Typically, Q

-l, _0.006 kg/m2s and £_0 9,12.3 kJ/gm of 02 , Yoi _ 0.23, mg i

giving T m_490@c. Because a small portion of the energy

released is used to preheat the incoming gas, the peak

temperature will be slightly lower than this value.

A plot of _m versus QRDco for various values of Dco is

shown in Fig. 3-4. Smoldering will only occur when _p(_l) <

< T--flam e , where_flame is a critical temperature above

which flaming is observed. Figure 4 also demonstrates the

between the ignition temperature,_ig, and therelationship
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minimum external heat flux, QE,min' that will produce

smoldering (replace • with Wig and Dco with QE,minDco ) . Note

that QE,min is found by setting Tm=Tig and d-T/dxl_:o = 0 in

Eq.(3-23), giving

(3-32)

m

When either the ignition temperature, Tig, or the radiation

heat losses, QRDco , increase, a greater amount of energy

must be supplied to the bottom of the material to produce

smoldering.

Integrating Eq.(3-13) from _=0 to _=-L and combining the

resulting expression with Eq.(3-19) provides an expression

for Vp,

Of the energy that is transferred downstream from the char

oxidation zone (see the first two terms on the right hand

side of the above equation), only a portion is consumed in

the pyrolysis reaction region. Most of the energy is stored

in the hot char in Region II in Fig. 3-1A [I], a small

fraction is used to preheat the unburnt solid in Region I

and the remainder is consumed in pyrolysis. As t-_oo,
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FIG. 3-5: Predicted (---) pyrolysis velocities, vp(tT_),

versus initial gas velocity, u i, for cellulosic insulation with

(i-_)_si=34 kg/m 3, Cs=2.4 kJ/kg, Qp=0.37 kJ/gm, Sc=0.3, _m=l.8 and

_p=l. Shown are measurements [19] between thermocoupies 1 and 2

(_) and between 2 and 3 (+) - thermocouples 1,2 and 3, were

placed 7.5 cm, i0.I cm and 11.4 cm, from the bottom, respectively.



68

radiative and conductive heat transfer downstream from both

reaction regions is negligible, and Eq.(3-34) gives

O

(3-35)

Thus, energy consumed in the pyrolysis zone and stored by

the hot char is supplied only by gas phase convection in the

limit _. A reasonable approximation for the second term

on the left hand side of the above equation is

o

Combining Eqs. (3-35,3-36), gives

t

(3-36)

V (3-37)

As t?_ , the pyrolysis velocity approaches a constant value

which, in general, differs from the char oxidation speed.

Because the two reaction fronts move at different

velocities, no steady solutions exist and countercurrent

smolder propagation is inherently unsteady. Predicted

_p(_) are compared with measurements by Ohlemiller and

Lucca [19] in Fig. 3-5.

Self-sustaining countercurrent smoldering is not

possible when dL/d[<0, corresponding to

c_Lr,..-rp") < '¢,i _,,,,t_,,.,,
Qe %M0 •

(3-38)
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Solutions do not exist when the energy convected downstream

from the oxidation zone is insufficient to drive the

pyrolysis front.

3.3.2 CASE II: An Ash Layer Builds Below Smolder Wave

Results presented in this section are restricted to

small values of the stoichiometric coefficient, s a. In

Region III in Fig. 3-1B (-_<_<0), the term involving the time

derivative in Eq.(3-24) is small when Sa<<l (note that _s=Sa

in Region III). Thus, _ is steady in Region III when Sa<<l.

When the thickness of the ash layer is much greater than x c,

radiation heat losses from below are negligible. The

residual ash serves as insulation, leading to high peak

temperatures. The dimensionless temperature of the oxidation

zone, _m' approaches Dco as _oo. For Yoi_ 0.2, T m_2,500

C. Such high temperatures will produce flaming combustion in

most materials of interest [i]. In the absence of radial

heat losses, temperatures encountered in the countercurrent

configuration are much higher than those in cocurrent

smolder. This is due to the role of gas phase convection.

For countercurrent smolder, hot gases produced in the

reaction zone flow into the unburnt solid, serving to

preheat the incoming fuel. While in cocurrent smolder, gas

phase convection carries energy out of the system. When an

ash layer builds below the smolder zone, Eq.(3-37) still

determines the pyrolysis velocity, _p(_). Because %

Dco, Eq.(3-37) now gives
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ai _ - l)oo c3-391

Since Dco/Dcp is fairly large, on the order of i0, Eq.(3-39)

yields dL/dt _i. In dimensional form,

(3-40)

Typically, u i _5 X 10 -3 m/s, (l-_)_si/_gi_40 and Cs'_Cg,

giving dL/dt _i0 -4 m/s. Note that v_3 X 10 -05 m/s for this

case, so Vp_- 1.3 X 10 -4 cm/s.

3.4 CONCLOSIONS

A model of unsteady, countercurrent smoldering

combustion propagation has been developed. The proposed

application is an experiment for use on the Space Shuttle.

Due to the microgravity environment, propagation of the

smolder wave was assumed to be one-dimensional. Radiation

heat transfer was incorporated using a diffusion

approximation. Smoldering combustion was represented using a

two step mechanism, which consisted of a pyrolysis reaction

followed by a char oxidation reaction. A "flame" sheet

approximation was used to model the oxidation zone and it

was assumed pyrolysis occurs at a known temperature, Tp. In

general, the two reaction fronts moved at different

velocities and countercurrent smolder propagation was

unsteady. Two cases were considered: (i) no residual ash,
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_aMa=0, and complete consumption of the char ; and (2) an

ash layer forming beneath the oxidation zone, due to either

production of ash during oxidation, 9aMa_0, or leakage of

char through the reaction zone.

Explicit expressions were derived for the char

oxidation velocity, v, the maximum temperature, Tm, and the

pyrolysis front velocity, Vp, in the limit of long time. Key

results included: (i) v is linearly proportional to inlet

oxygen mass flux, with the proportionality constant

determined from stoichiometry ; (2) in the absence of radial

heat losses, Vp approaches a constant value which is, in

general, different from v ; (3A) for the no residual ash

case in limit of long time, T m is determined by a balance

among the energy released in the oxidation region, the

energy required to preheat the gas and radiation heat

losses ; (3B) when an ash layer builds below the smolder

wave, radiation heat losses from the bottom are negligible

in the limit t_ and T m is higher than in the no ash

case ; and (4) self-sustained countercurrent smoldering

combustion is only possible when Cg(Tm-Tp)/Qp>

Yoi@usMus/QoMo , i.e. solutions cease to exist when the

energy convected by the gas phase is insufficient to drive

the pyrolysis front.

The need for further experimental investigation of

countercurrent smoldering cannot be overemphasized. Such

experiments are necessary both to test the present model and



to guide future theoretical work. Especially important is

the transition to flaming combustion. Results from this

study indicate that such a transition is more likely in

materials which form a residual ash. It is anticipated that

these materials will be readily identified experimentally.

72
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CHAPTER 4

FREE COCURRENT SMOLDERING COMBUSTION

4.1 INTRODUCTION

A schematic of the problem under consideration is shown

in Fig. 4-1. The free cocurrent smoldering analysis

presented in this chapter is very similar to the forced flow

study in Chapter 2. The only difference is that in free

flow, the inlet gas velocity, u i, is determined by balancing

buoyancy and drag forces while in forced flow, u i is known a

priori. Cocurrent smolder propagation under free flow

conditions is highly dependent on the magnitude of the

buoyant forces due to the oxygen-limited nature of

smoldering combustion [19,20]. Since all of the oxygen

reaching the reaction zone is consumed, the total heat

release is approximately proportional to the incoming oxygen

mass flux, moi. Increasing the buoyancy force increases u i,

I tl

raising moi and leading to higher temperatures and faster

smolder spread [19].

Buoyant forces, which are proportional to the product

g(_gi-_g), can be controlled experimentally by varying

either the gravitational acceleration, g, or the density

difference, _gi- _" The latter approach is followed in the

work presented here. By changing the ambient pressure, the

density of the gas and consequently the buoyancy force is

varied. The rate of smolder spread through the porous fuel
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(alpha-cellulose) is obtained from the temperature histories

of thermocouples placed at fixed intervals along the

centerline of the material. A chimney, which fits on top of

the fuel container (see Fig. 4-1), enhances the buoyantly

driven flow of oxidizer through the porous fuel and prevents

the diffusion of air to the top surface of the combustible

material. Both the smolder velocity and the peak temperature

are found to increase as the ambient pressure is increased.

A model of cocurrent smoldering combustion under free

flow conditions is also presented. In one dimension, the gas

velocity is determined from the conservation of gas mass -

as a function of the inlet gas velocity, u i. Because the

pressure varies by a small amount over distances comparable

the thickness of the smolder wave in the very porous fuels

of interest [i], the transport equations can be solved

before considering the momentum equation. Explicit

expressions for the smolder velocity, v, and the final

temperature, Tf, were derived in Chapter 2 by using

activation energy asymptotics. Both eigenvalues, v and Tf,

are functions of u i. The quantity, u i, is estimated by using

an integral momentum analysis. Good agreement between the

predictions and the measurements is observed.

4.2 ANALYSIS

4.2.1 Governing Equations

Equations (2-4 through 2-13) govern cocurrent smolder

propagation. Typical properties of a bed of alpha-cellulose
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TABLE 4-I: Properties of a packed bed of alpha-cellulose, a

0.82

_si [kg/m3] 620

c s [kJ/(kg K)] 0.84

kef f [W/m K] 0.050

kra d(T i) [W/m K] _0

E [kJ/mole] 180

Q [kJ/kg] 12,500

a d [105Newton-s/m 4] 3.0

Z [106ml" 5/kg0" 5K0" 5s] 3
d

a 0.5

b 1

c 0.5

_ 1.4

b (3.7)c

a. Properties given in refs. [28,40].

b. Darcy drag coefficient determined by matching predicted

and measured smolder velocities fo_ cocurrent smoldering

of a 4 cm packed bed of alpha-cellulose (under free flow

conditions).

c. Shown in paranthesis is the Darcy drag coefficient

determined by direct measurement [_@].

d. Pre-exponential factor determined by matching predicted

and measured final temperatures for cocurrent smoldering

of a 4 cm packed bed of alpha-cellulose (under free flow

conditions).
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are given in Table 4-I. The oxygen mass flux, which appears

in the boundary condition in Eq. (2-11), is not known a

priori in free flow because it depends on the inlet gas

velocity, u i. A global momentum analysis is used to

determine u i in this section. In the absence of an imposed

pressure gradient, the conservation of momentum requires

I - ¢ %(%.,-

where L is the chimney height, h is the height of the virgin

solid and ho-h is the char height - see Fig. 4-1. The

quantity, _a d, is the proportionality constant in Darcy's

Law. While the flow resistance, a d, is lower in the char

layer, the gas phase velocity is higher. The latter is due

to both gas expansion and generation in the reaction zone.

Therefore, it is assumed that adu remains constant. A step

change in _g from Pgi to _gf occurs at x=0. Assuming that

the flow resistance in the solid is much larger than the

resistance in the chimney, the dimensionless initial

velocity, _i=U[/Uc , is given by

where a characteristic velocity,
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TABLE 4-II: Dimensionless parameters affecting the smolder
velocity, the final temperature and the gas velocity. In
addition to the following parameters, req, a, b, and c must
be specified.

Dimensionless measure
of the energy released in
the reaction zone (varies
from 0 to 40)

A =

E.
u

RTL

Dimensionless radiation

conductivity (usually less

than 0.i)

Dimensionless activation

energy (varies between 50

and 70)

Dimensionless pre-

exponential factor

(usual_ lies between 108

and i0 _v )
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has been chosen by balancing buoyancy forces and drag

forces. In the experiments presented here, L/h o _ 10. When

L>> h O, Eq. (4-3) yields,

_c : -- (4-4)

a ko •

4.2.2 Asymptotic Solution of the Transport Equations

l

For cellulose, the Zel'dovich number, _ = _ _f/(l+Tf) 2,

is on the order of fifteen [28]. Because of the Arrhenius-

type dependence of the reaction rate on temperature,

relatively small changes in temperature can lead to large

changes in the reaction rate. Under such circumstances, it

is reasonable to assume that the oxidation reaction is

confined to a thin region in which the source terms in the

governing equations are balanced by diffusion [2,3]. In the

outer regions, convection and diffusion balance. The final

temperature is determined by matching the inner solution

with the outer solutions. The details of this matching

process are available in Chapter 2. Dimensionless parameters

governing cocurrent smolder propagation under free flow

conditions are listed in Table 4-II. The dimensionless final

temperature, _f=(Tf-Ti)/T i, is determined by

where

(4-6)
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DIMENSIONLESS PRE-EXPONENTIAL, _ X I0 -10

FIG. 4-2: Dimensionless final temperature, _f, versus the

dimensionless pre-exponential,_ , parameterized in the dimen-

sionless activation energy, 6 / , and the dimensionless radiation

conductivity, NR, with a=0.5, c=0.5 and req=0.
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DIMENSIONLESS PRE-EXPONENTIAL, _X 10 -10

FIG. 4-3: Normalized initial gas velocity, _i' versus the

dimensionless pre-exponential,-_ , parameterized in the dimen-

sionless activation energy, _ and the dimensionless radiation

conductivity, N R, with am0.5, c=0.5 and req=0.
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Equations (4-2,4-5,4-6) determine _f and _i" In most

cocurrent smolder combustion applications, the inverse

equivalence ratio, req= @usMus Eoi / _oMo eus i, is small

[9,19,20]. As req_0, f(b,req) 90.5.

4.2.3 Final Temperature, Initial Gas Velocity, and Smolder

Velocity

For small values of the inverse equivalence ratio, req,

the dimensionless final temperature, _f, and the normalized

initial gas velocity,-u i, are independent of the constant,

b, and req. In the limit req_0, both_f and_i depend on

five parameters, the dimensionless radiation conductivity,
/

NR, the dimensionless activation energy, _ , the

dimensionless pre-exponential,._, and the constants, a and

c - see Eqs. (4-2,4-5,4-6). Figure 4-2 illustrates the

variation of Tf with N R, and j_, for a-- 0.5 and c= 0.5.

Note that _f decreases logarithmically with _. Thus, for a

given fuel, Tf depends only on the characteristic oxygen

,#

mass flux, moc/Yoi_giUc , increasing logarithmically with

. II

moc. Buoyancy affects Tf through uc, which is proportional

pg ,li is proportional toto the product, g i" Consequently, moc

. sl _,

the square of the ambient pressure - that is, moc _ gPa"

As shown in Fig. 4-3, u"i is weakly dependent on j_ and

N R. For a particular fuel, u i, is fairly constant. Over a

wide range of conditions, u i- 0.6 +_ 0.i. That is, setting u i

equal to 0.6 usually introduces less than a 15% error. As a

first approximation, ui_ 0.6u c, where u c is determined from

Eq. (4-4). Consequently, u i is approximately proportional to
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1.8

DC=

8.5

_4

|
_4

o

DIMENSIONLESS PRE-EXPONENT IAL, A X 10 -10

FIG. 4-4: Normalized smolder velocity, v, versus the dimen-

sionless pre-exponential,._ , parameterized in the dimensionless

heat release, D c, with _t=70, a=0.5, c=0.5, NR=0 and req=0.
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the characteristic buoyancy force, gPgi"

A normalized smolder velocity, _=v/v c,

where a characteristic smolder velocity,

is given by

(4-7)

Vc -w

Q . II

is defined by the balancing the energy released in the

(4-8)

reaction zone and the energy required to raise the

temperature of the solid from T i to Tf. For a given solid

fuel, _ is affected by two parameters, the dimensionless

pre-exponential, _, which is inversely proportional to moc

(=Yoi_giUc), and the dimensionless heat release, D c, which

is proportional to Yoi" A plot of _ versus _, parameterized

in D c, with _J=70, a=0.5, c=0.5, NR=0, and req=0, is shown

in Fig. 4-4. Decreasing Dc leads to lower values of _.

Smoldering extinguishes when Dc--_ f, corresponding to _=0.

Because _ varies slowly with _, v _v c. Using Eqs.(4-4,4-8),

V (4-9)

The smolder velocity varies quadratically with the ambient

pressure and varies linearly with the gravitational

acceleration (that is, v_gPa ) .
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mlcroproces_or

FIG. 4-5: Experimental installation.
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4.3 EXPERIMENTS

Experiments are performed to determine the effect of

ambient pressure, and consequently of buoyancy, on the rate

of smolder spread through a porous combustible material. A

schematic diagram of the experimental installation is shown

in Fig. 4-5. The experiments are carried out in a

cylindrical pressure vessel, 1.8 m in diameter and 3.3 m

long. A vacuum pump or a compressor is used to set the

vessel pressure below or above atmospheric pressure. The

oxygen concentration in the vessel can be varied by adding

oxygen or nitrogen from pressurized bottles. Acrylic windows

located at opposite sides of the vessel provide optical

access to the test area. The fuel/container unit is held by

a frame in the middle of the test area, avoiding obstruction

of the flow of air in and around the fuel container.

The porous fuel is contained in a vertical Pyrex

cylinder, 0.07 m in diameter and 0.16 m long. These

dimensions, in particular the cylinder diameter, are

selected to reduce to a minimum, the depletion of oxygen in

the vessel during the fuel combustion process, while

ensuring a one-dimensional smolder spread process in a

region of at least 2 cm in diameter around the cylinder

axis. Small holes placed longitudinally along the side of

the cylinder allow the positioning of thermocouples or gas

sampling probes in the porous material. A nichrome wire

electrical ignitor can be positioned at the top or the

bottom of the cylindrical container to initiate the
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smoldering process. As an alternative ignition method, an

easily ignitable fuel (for example, cellulose soaked in

heptane) is thinly spread on top of the porous material and

ignited with a small pilot flame or a spark. Flaming

combustion of the volatile fuel initiates the smoldering

combustion of the porous combustible. A chimney, 0.33 m long

and 0.03 m in diameter, tapered at the bottom to a diameter

of 0.07 m is fitted on top of the fuel container. The

chimney is used to both enhance the buoyantly driven flow of

oxidizer through the porous fuel and to prevent the

diffusion of air to the top surface of the combustible

material. The fuel container and the chimney are insulated

with a fiber-glass jacket to reduce heat losses to the

environment.

The rate at which smoldering spreads is measured from

temperature histories of the thermocouples embedded in the

porous fuel with their junction placed at fixed distances

along the cylinder axis. Four Chromel-Alumel thermocouples,

0.8 mm in diameter, are embedded in the porous fuel at 5 or

i0 mm apart. The emf from the thermocouples is amplified to

volt levels and processed in a real time acquisition

microcomputer. With the fuel temperature histories, the rate

of spread of smoldering combustion is calculated from the

time lapse of reaction zone arrival to two consecutive

thermocouples, and the _nown distance between thermocouples.

The arrival of the smolder reaction zone at the thermocouple



88

position is characterized by a maximum in the temperature

profile. Under most experimental conditions this maximum is

not sharply defined, introducing inaccuracies in the

definition of the smolder front arrival time and

consequently in the calculation of the smoldering spread

rate. In spite of this problem, the thermocouple probing

method is considered one of the most accurate methods to

measure the rate of smolder spread.

4.4 RESULTS AND COMPARISON

Results presented in this work are from experiments

conducted using alpha-cellulose powder as a porous

combustible fuel. A fixed amount (by weight) of alpha-

cellulose was loosely packed in the cylindrical container

filling a constant volume, thereby keeping an approximately

constant void volume fraction. The cellulose was supported

at the bottom by a wire mesh which was attached to the

cylinder surface 40 mm from the top of the cylinder. The

upper cellulose surface was kept flush with the top cylinder

rim. This 40 mm cellulose bed height was found to be the

maximum at which the present experimental configuration

could operate. For larger bed heights, the pressure drop

through the porous solid is too large to be overcome by the

chimney generated buoyancy, particularly at pressures below

atmospheric. The resulting buoyantly induced flow of air is

not large enough to sustain the progress of the smolder

reaction. Although longer fuel beds could be tested by

increasing the chimney height, the 40 mm fuel height is

°
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sufficient to provide the information sought in this work.

All of the experiments were conducted with an approximately

constant void volume fraction of 0.82. The void volume

fraction was estimated from weight of the alpha-cellulose,

the volume it occupies and the cellulose density given in

Table 4-I. After coating the alpha-cellulose with a thin

layer of gold, an electron microscope was used to

investigate the structure of the material. At a

magnification of 300 X, it was seen that the material is

formed by long, interlaced, cellulose fibers. In the absence

of reliable experimental data, photographs, such as the one

shown Chapter 2, can be used to estimate various properties,

including the Darcy drag coefficient, a d, and the radiation

path length, _r.

Measured peak temperatures at two thermocouple

locations are presented in Fig. 4-6, for various values of

the ambient air pressure. For these measurements, four

thermocouples were placed, in most cases, 5 mm apart from

each other with the first thermocouple located 15 mm from

the top of the cellulose surface. In a few tests, the

thermocouples were positioned at distances i0 mm apart. Peak

temperatures predicted by the theoretical model, with the

parameters given in Table 4-I, are also show_n in Fig. 4-6.

The value of the activation energy given in Table 4-I was

suggested by Moussa et al [28], who modelled smolder spread

in horizontal, cylindrical, cellulose fuel elements. Because



91

,T

I

G_

6

"4-

•I- 4-

+ .4-4-I-

+

I

i

[D_SlIID] A "_ID(_ _I_G'IOWS

6

o
I

m w

qD

_ 0

m 0

2 2 u!

d ® "

o 0
0



92

char oxidation occurs on the outer surface of the cylinder,

Moussa et al represented the reaction rate by an overall

Arrhenius expression based on the surface area of the

cylinder. Consequently, there is some uncertainty in the

precise value of the pre-exponential factor in Eq.(2-10),

for this reaction rate expression is based on a volumetric

basis and the oxidation reaction occurs well within the

outer boundaries of the porous solid. The value of the pre-

exponential factor given in Table 4-I was selected by

matching calculated and measured peak temperatures at one

point. Because the distance over which buoyancy acts is much

larger than the thickness of the alpha-cellulose bed, the

peak temperature is fairly constant as smolder wave

propagates. As shown in Fig. 4-6, there is very little

difference between the peak temperatures at the second and

fourth thermocouples. Overall, there is good qualitative

agreement between the peak temperatures predicted by the

theoretical model and those determined from experiments.

Measured rates of smolder spread through the alpha-

cellulose _ed are presented in Fig. 4-7 for several ambient

air pressures. The smolder velocities were calculated from

the outputs of the second and fourth thermocouples, which

were placed 20 mm and 30 mm below the top surface of the

cellulose bed, respectively. These thermocouples were chosen

because they provided the most reproducible data. As is seen

from the experimental data plotted in Fig. 4-7, there is

scatter in the measurements, particularly at the higher
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ambient pressures. This scatter is primarily attributable to

inaccuracies in the determination of the time at which the

smoldering front arrives at the thermocouple location in

question. These errors are especially noticeable at higher

pressures because the smolder velocity is higher. Small

variations in the cellulose void volume fraction and

uncertainty in the precise location of the thermocouples

also contribute to the scatter in the data.

For comparison purposes, theoretically predicted

smolder velocities are also presented in Fig. 4-7. Because

of uncertainty in the Darcy drag coefficient during smolder

propagation, the value used in these calculations was

selected by matching the predicted and measured smolder"

velocities at one point. Although the comparison between

theory and experiments can only be viewed as qualitative, it

is seen from Fig. 4-7 that the theoretical model predicts

very well the general trend of the experimental results,

with slower smolder spread as the ambient pressure

decreases. As discussed earlier, both the total heat release

and the smolder velocity are proportional to inlet oxygen

mass flux. Diminishing either the gas velocity or the

density of the oxygen reduces the amount of oxygen reaching

the reaction zone, leading to smaller smolder velocities.

Decreasing the ambient pressure has two major effects.

Firstly, the buoyancy force is lessened, leading to lower

air flow velocities. Secondly, the density of oxygen is
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FIG. 4-8: Measured (+) inverse Darcy coefficients, 1/_a d,

for various void volume fractions, _ , and a quadratic fit (--)

through the data. Also shown is the theoretical value (&)

obtained by matching predicted and measured smolder velocities.



reduced. Consequently, the smolder velocity decreases

quadratically with the ambient pressure. Measurements for an

alpha-cellulose bed support this hypothesis - see Fig. 4-7.

Experimentally determined Darcy drag coefficients are

exhibited in Fig. 4-8 for several values of the void volume

fraction [49]. These experiments were conducted in the

absence of combustion. A fixed amount (by weight) of alpha-

cellulose was placed in a bed of roughly the same depth (40

mm) as that used in the smoldering combustion experiments.

The Darcy coefficient was estimated by imposing several

known pressure drops through the porous solid and measuring

the resulting air flow velocities. Also shown in Fig. 4-8 is

the value of the Darcy coefficient calculated by matching

predicted and measured smolder velocities for a void volume

fraction of 0.82. This value is in close agreement with the

direct measurements, supporting the hypothesis that the

product of the Darcy drag coefficient and the gas velocity,

adu, remains constant - see section 4.2.1.

An interesting experimental observation is that

smoldering combustion does not spread at ambient pressures

below 0.6 atmospheres. Recall that the extinction limit

proposed in section 4.2.3 predicts that, for a given initial

oxygen mass flux, there is a critical oxygen concentration

below which steady solutions do not exist. Smolder

propagation will cease when all of energy released in the

reaction zone is used to heat the incoming gas. However,

because heat losses have been ignored in the analysis, this

95



96

limit does not give a critical ambient pressure below which

smoldering extinguishes. The total heat released in the

reaction zone decreases quadratically with the ambient

pressure. When the heat release is of the same order of

magnitude as the heat losses, smolderingpropagation will

stop. This result is also valid for laminar premixed flames

[2,33].

Therefore, there exists a critical oxygen flow rate,

which depends on the magnitude of the heat losses, below

which smoldering extinguishes. For the experimental

apparatus employed in this study, utilizing an alpha-

cellulose fuel with void volume fractions equal to or

smaller than the one used here and an air oxidizer,

smoldering combustion will not take place if species

diffusion is the only mechanism to transport the oxidizer to

the reaction zone. This result is especially important for

the potential development of the smoldering combustion

process under micro-gravity conditions, in space vehicles

for example, since buoyancy forces are negligible. Under

such circumstances, cocurrent smoldering combustion will

extinguish unless the oxidizer is transported by a forced

air flow.

4.5 CONCLUSIONS .................

A model of one-dimensional, steady, cocurrent

smoldering combustion under free flow conditions has been
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developed. Smoldering was represented using a finite-rate,

one-step reaction mechanism. Explicit expressions for the

smolder velocity, the final temperature and the initial gas

velocity were derived. Smolder velocities and peak

temperatures predicted by the theory for a packing of alpha-

cellulose were compared with experimental results for values

of the ambient pressure ranging from 0.6 to 1.2 atmospheres.

Primarily because of difficulty in accurately determining

the time at which the smolder front reaches a particular

thermocouple location, there is scatter in the experimental

data. This scatter is especially noticeable at pressures

above atmospheric. Overall, there is good qualitative

agreement between predictions and measurements.

Smoldering combustion propagation is highly dependent

on a steady flow of oxidizer reaching the reaction zone.

Both experiments and theory suggest that the smolder

velocity increases approximately linearly with the oxygen

mass flux, while the final temperature increases fairly

slowly (in fact, logarithmically) with this flow rate.

Extinction is _bserved to occur if the flow rate is below a

critical value. This indicates that, at least for alpha-

cellulose with void volume fractions equal to or smaller

than the one tested in this work, diffusion of oxidizer

toward the reaction zone is not a sufficient transport

mechanism to sustain the cocurrent smoldering combustion

process. This result is particularly important for natural

convection smoldering combustion under microgravity
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conditions since buoyancy forces are very small, and the

oxidizer can only be transported to the reaction zone by

diffusion. The present study suggests that for cocurrent

smoldering combustion to occur in a microgravity

environment, a flow of oxidizer must either be forced

through the fuel, or the porous fuel must have a large void

volume fraction, a small Darcy coefficient, a low activation

energy and a large effective thermal conductivity. That is,

the solid fuel must present minimum obstruction to the free

flow of gases, and it should possess properties that favor

the transport of heat and mass by diffusion.

However, the present work can only be viewed as

preliminary. Heat losses from the sides of the cylinder must

be included in the analysis to accurately predict the

extinguishment of cocurrent smoldering combustion. A

detailed experimental investigation of the smolder

extinction process is needed. Experiments with other porous

fuels must be undertaken to determine the generality of the

conclusions reached in this study. In particular, accurate

determination of the conditions at which smoldering

combustion will occur in a microgravity environment is

necessary.
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CHAPTER 5

FUTURE RESEARCH

°

5.1 INTRODUCTION

Further theoretical and experimental investigation of

both cocurrent and countercurrent smoldering combustion is

anticipated. The goal of this research program is to design

a smoldering experiment for use on the Space Shuttle. The

current ground based experimental program will be continued

through the next grant period. Before making further

refinements in the theory, measurements are needed to test

the current analytical models. Of particular interest is the

one-dimensional propagation assumption. It is anticipated

that purely 1-d propagation will only be possible in a

microgravity environment. After establishing the range of

validity of the 1-d approximation, simplifications in the

chemistry and the effect of variable properties will be

scrutinized. Comparisons between theory and experiments will

hopefully lead to refinements in the current analytical

models. A discussion of the proposed experiments and

possible comparisons between existing theory and future

measurements follows.

Many materials can sustain smoldering combustion.

Smoldering has been observed in coal [3,4], cotton [5,6],

paper [7], wood [12-14], thermal insulation materials [15]

and various dusts [16,17]. Additionally, smoldering
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combustion can occur in different foams, including PUI6 [29]

and PT34 [29] foams, Product Research Committee foams GM-21

[29] and GM-25 [20], all of which are flexible polyurethane

foams, and the rigid isocyanurate foam designated GM-41

[19]. However, GM-21 and PT34 foams will undergo self-

sustained smoldering only when they are covered with cotton

fabric [29]. A discussion of the ability of rigid and

flexible polymer foams to smolder is given by Ohlemiller and

Rogers [9]. Because comparisons between theory and

measurements are sought, only materials whose properties are

readily available in the literature will be utilized as

fuels in the proposed experiments. Detailed smolder reaction

mechanisms are available for alpha-cellulose [28], a GM-25

flexible polyurethane foam [20], wood dust [32] and

cellulosic insulation materials [46]. These mechanisms are

discussed in Appendix A.

Several researchers [19,22,23] have investigated

smoldering combustion in the cocurrent configuration

experimentally. Rogers and Ohlemiller [22] measured the

smolder velocity, v, and the final temperature, Tf, in a PRC

GM-25 polyurethane foam. While holding the ambient pressure,

Pa' fixed at 1 atm, the initial oxygen mass fraction, Yoi'

was varied from 0.18 to 0.44 for two values of the initial

gas velocity, u i, 0.04 and 0.15 cm/sec. Resulting v ranged

from 0.0056 to 0.022 cm/sec, and increased approximately

• I;

linearly with the initial oxygen mass flux, moi. The final
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temperature, Tf, increased slowly with moi, varying from 410

to 490_. Ohlemiller and Lucca [19] studied the cocurrent

smoldering of cellulosic insulation materials and of a

polyisocyanurate polymer, PRC foam GM-41. The latter was

mechanically ground into particles with a mean diameter of

several hundred microns. Both Yoi and Pa were held fixed at

0.23 and 1 atm, respectively, while u i was varied from 0.04

to 0.77 cm/sec, yielding v ranging 0.004 to 0.04 cm/sec.

Dosanjh et al [23] considered the free cocurrent smoldering

of a packing of alpha-cellulose fibers. While fixing Yoi at

0.23, Pa changed from 0.5 to 1.2 atm, giving v between

0.0007 and 0.002 cm/sec.

Relatively little attention has been given to

smoldering combustion in the countercurrent configuration

[I]. Ohlemiller and Lucca [19], who studied the

countercurrent smoldering of cellulosic insulation, measured

the char oxidation velocity, v, the pyrolysis front

velocity, Vp, and the maximum temperature, Tm, as u i changed

from 0.15 to 0.49 cm/sec, with Yoi and Pa fixed at 0.23 and

1 atm, respectively. Both v, which ranged from 0.001 to

0.0029 cm/sec, and Vp, which varied from 0.003 to 0.014

cm/sec, increased roughly linearly with u i, while T m, which

fell between 540 and 590°C, was independent of u i-

The need for detailed experimental study of the

transition of smoldering to flaming is clear. Because

interest in smoldering is in large measure due to fire

safety concerns, a good fundamental understanding of the

i01
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transition to flaming is essential. Unfortunately, very

little is known about this phenomenon. In a recent review

article, Ohlemiller [i] states that "transition to flaming

has only been superficially explored experimentally and not

modeled at all." In passing, Rogers and Ohlemiller [22]

noted that flaming was observed during the cocurrent

combustion of a GM-25 polyurethane foam when Yoi was above

0.6 and extinction occurred for Yoi below 0.i. However, no

data was presented to support these claims. Moussa et al

[28] and Ortiz-Molina et al [29], who studied smolder spread

in horizontal, cylindrical, alpha-cellulose and polyurethane

fuel elements, reported that flaming occurred when the

oxygen partial pressure was raised above a critical value.

This critical value decreased as the oxygen mole fraction

was increased.

5.2 EXPERIMENTS

Experiments will be performed on cocurrent and

countercurrent smoldering combustion of porous fuels under

forced flow conditions. These experiments will take place in

a large pressure chamber in which variations in gravity can

be simulated by varying the buoyancy force, g(_gi-_g), by

changing the ambient pressure, Pa - note that the gas

density is linearly related to Pa through the ideal gas law.

The porous fuel is placed in a vertical pyrex cylinder, _i0

cm in diameter and _20 cm tall. Thermocouples placed

approximately one centimeter apart along the centerline of
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this cylinder are used to determine the temperature

histories inside the cylinder. Reaction zone propagation

velocities are obtained from these temperature histories and

the known distances between thermocouples. Forced flow

conditions will be generated using a small scale combustion

tunnel which will be totally contained within the pressure

chamber. This tunnel consists of a small settling chamber

connected to the test section by a converging nozzle. The

flow of oxidizer is induced with a low power compressor. The

flow is controlled and metered with a mass flow controller

activated by a microcomputer (which is also utilized for

data acquisition). An electrically heated wire grid is to be

used as a planar ignition source.

Reaction zone propagation speeds and peak temperatures

will be determined for a wide range of conditions. Several

materials, including alpha-cellulose beds at different

packing densities and polyurethane foams, will be utilized

as fuels. The inlet gas velocity, u i, the initial oxygen

mass fraction, Yoi, and the ambient pressure, Pa, will be

varied independently. As discussed in the introduction, the

effect of modifying Yoi and u i on propagation velocities and

peak temperatures has been studied previously [19,22].

Consequently, the emphasis of the proposed experiments will

be on quantifying the effect of altering Pa" Only Pa greater

than 0.5 atm will be considered, for at very low pressures

the reaction rates are strongly dependent on Pa" As Pa

decreases, buoyant forces, which are proportional to Pa,
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become less important. It is anticipated that there will be

better agreement between theory and measurements at lower

values of Pa because, strictly speaking, the one-dimensional

propagation assumption is only valid in a microgravity

environment. Moreover, comparisons between measurements and

predictions at various Pa will establish the range of

validity of the one-dimensional propagation approximation.

Extinction of smoldering can be investigated in both

configurations. Unlike countercurrent smolder, smoldering in

the cocurrent configuration becomes steady in a relatively

short period of time [19]. Consequently, initial experiments

will focus on the cocurrent configuration. An extinction

limit will be identified by performing experiments at a wide

range conditions and noting when smoldering extinguishes.

When the results of these experiments are plotted in the

three dimensional space consisting of the regions Yoi>0,

ui>0 and Pa>0, an extinction surface can be defined for each

fuel under consideration. For a given fuel, self-sustained

smoldering combustion is only possible for points above its

extinction surface. Determination of such an surface

requires considerable trial and error. However,

considerable simplification is possible, for in the one-

dimensional propagation models neither u i nor Pa appear

independently, only their product appears. Therefore, when

two or three dimensional effects are unimportant, the

extinction surface collapses onto a line in the coordinate

system with axes Yoi>0 and UiPa>0. Future experiments will



105

identify critical values of Pa below which smoldering

extinguishes by fixing Yoi (and ui) and lowering Pa until

extinction occurs. This critical value of Pa will decrease

as Yoi increases.

At the opposite extreme, raising either Yoi' ui or Pa

can lead to flaming combustion. The transition of smoldering

to flaming will be studied experimentally in both

configurations. In the countercurrent configuration, flaming

is much more likely when a residual ash forms beneath the

the smolder wave. This residual ash serves as insulation,

and its formation leads to considerably higher temperatures.

Different porous fuels will be classified according to their

ability to produce such an ash. For each fuel under

consideration, an attempt will be made to identify a

critical temperature, Tflam e, above which flaming combustion

is observed. Provided that such a critical temperature can

be identified, the analytical models developed in Chapters 2

and 3 can be used to determine a flaming limit by setting

the peak temperature predicted by these models equal to

Tflam e. Determination of such a limit is discussed in the

following section.

5.3 COMPARISONS WITH THEORY

Possible comparisons between the measurements described

in the previous section and the existing theory are

discussed in this section. In the forced countercurrent

smoldering experiments, the char oxidation velocity, v, the
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pyrolysis front velocity, Vp, and the maximum temperature,

Tm, are to be measured as a function of Pa at various fixed

values of u i and Yoi" These measurements will be compared

with the theoretical results presented in Chapter 3. For

one-dimensional countercurrent smolder, the dimensionless

oxidation velocity, V, is given by

V : 9.&_A._ V.o%C5 (5-1)

.,#1

where v has been normalized by Xc/t c, with Xc=keff/mgiCg and

tc=X_(l- _)fsics/keff. The maximum temperature is highly

dependent on the magnitude of heat losses from the bottom of

the fuel. When a residual ash layer builds below the smolder

wave (Case If), such heat losses become negligible as t_,

and T m approaches i/Dco, where Dco (=QYoi/CgTi) is a

dimensionless heat release• For the no residual ash case

(Case I), as _°, Tm is determined by

(5-2)

where QR _: 60-T_/nm".%. of" is a dimensionless measure of

radiation heat losses from the bottom. For several fuels of

interest, Q_ 12 kJ/gm of 02 [28,39]. A plot of T m versus the

• II

inlet oxygen mass flux, moi, parameterized in the initial

oxygen concentration, Yoi, for Q=12 kJ/gm and _ =0.9, is

shown in Fig. 5-i. As t-_, the dimensionless pyrolysis

speed, _'p=Vptc/X c, approaches
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Vp = + "V

where Dcp (=Qp/CsT i) is a dimensionless measure of the

consumed by pyrolysis and _p is the pyrolysisenergy

• l;

temperature. Plots of Vp(t_ee) and v versus moi for GM-25

polyurethane, alpha-cellulose and wood dust are shown in

Figs. 5-2, 5-3 and 5-4, respectively. Oxidation velocities,

pyrolysis front velocities and maximum temperatures

calculated from Eqs. (5-1,5-2,5-3) will be compared with

measurements.

Forced cocurrent smoldering experiments will resolve

the dependence of the final temperature, Tf, and the smolder

velocity , v, on the ambient pressure, Pa" In purely one-

dimensional cocurrent smolder, the dimensionless final

temperature, Tf=(Tf-Ti)/T i, is determined from

/L I t NR(t
(5-4)

where N R (=16_'_r/3kef f) is a dimensionless radiation

conductivity, _I(=E/RTi) is a dimensionless activation

energy and _, which is inversely proportional to the

• lJ

initial oxygen mass flux, moi (see Table 2-1II), is a

dimensionless pre-exponential factor. Plots of Tf versus the

inlet oxygen mass flux, moi, for GM-25 polyurethane and

alpha-cellulose are given in Fig. 2-8. A characteristic

smolder velocity, Vc= Q_i/(l - _)_siCeff, is chosen by
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balancing the total energy released with the energy required

to preheat the solid and the dimensionless smolder velocity,

_=v/v c, is given by

D-- __l _ i cs-s 

where D c (=QYoi/CeffTi) is a dimensionless heat release.

A plot of smolder velocity versus dimensionless pre-

exponential, _L, for polyurethane is shown in Fig. 2-9.

Final temperatures and smolder velocities calculated from

Eqs.(5-4,5-5) will be compared with the measurements. As the

pressure is lowered, better agreement between predictions

and measurements is expected because buoyancy becomes less

important.

Comparison of the measured extinction limit in forced

cocurrent smoldering with the theory is complicated by the

fact that heat losses from the sides of the fuel cylinder

often play an important role near extinguishment [2]. When

such losses are important, the final temperature is still

determined by_Eq.(5-4) but the dimensionless smolder

velocity, _=v/v c, is now

I
)

O
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-_" -2where qL (=4hkeffT5/d(Q oi; ) is a dimensionless measure of

the radial heat losses and d is the diameter of the

cylinder. Smoldering can be extinguished either by lowering

Yoi' which reduces Dco, or by decreasing moi, which

increases qL" As Yoi is diminished, a greater portion of the

energy released in the reaction zone is used to preheat the

gas and consequently, less energy is available to preheat

o ;!

the solid. Decreasing moi decreases the total amount of

energy released in the reaction zone and once again, less

energy is available to preheat the solid. By comparing

predicted and measured smolder velocities near

extinguishment, the range of validity of the extinction limit

defined by setting _=0 in Eq.(5-6) will be established.

Recall that for each fuel under consideration, an

attempt will be made to identify a critical temperature,

Tflame, above which only flaming is observed. If such a

critical temperature can be determined, a flaming criterion

for forced cocurrent smolder can be defined by setting

Tf=Tflam e in Eq.(5-4). For countercurrent smolder, the

predicted flaming limit will depend on whether a residual

ash layer builds below the smolder wave. When an ash layer

forms (Case II), flaming will occur when Dco>i/_flam e (that

is, whenever Yoi is above a threshold value). For the no

residual ash case (Case I), a flaming limit can be

established by setting Tm=Tflam e in Eq.(5-2).
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CONCLUSIONS

• o

6.1 SUMMARY

Smoldering combustion propagation through very porous

solid materials has been modeled. The proposed application

is an experiment for use on the Space Shuttle. Due to the

microgravity environment, smolder propagation was assumed to

be one-dimensional. Two configurations were considered:

(I) cocurrent, premixed-flame-like or reverse ; and (2)

countercurrent, diffusion-flame-like or forward. Viewed in a

frame of reference moving the oxidation zone, the solid fuel

and the gaseous oxidizer enter the reaction zone from the

same direction during cocurrent smolder, while in the

countercurrent configuration, the fuel and the oxidizer

enter from opposite directions. Forced and free cocurrent

smolder as well as forced countercurrent propagation were

examined.

In both configurations, the initial oxygen mass flux,

• H

moi, emerges as a key parameter. Because all of the oxygen

reaching the smolder zone is consumed, the oxidation

• I!

velocity, v, increases approximately linearly with moi. For

cocurrent smolder, v is determined by a global energy

balance between the energy released in the oxidation region

and the energy required to preheat the solid and the gas.

While for countercurrent smolder, both the oxygen and the
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char are completely consumed and consequently, v is

proportional to moi with the proportionality constant

determined by stoichiometry.

The fundamental differences between the two

configurations follow from the change in the oxygen flow

direction. In cocurrent smolder, energy is transferred from

the oxidation zone to the pyrolysis region by conduction and

radiation. Gas phase convection carries energy upward and

out of the system. Provided that the inlet gas velocity

varies slowly, cocurrent smolder reaches a steady state. On

the other hand, in countercurrent smolder, energy is also

transferred from the oxidation zone to the pyrolysis front

by gas phase convection. Because convection is a long range

"force", the pyrolysis front reaches a steady velocity which

is different from the oxidation velocity when radial heat

losses are negligible. Thus, countercurrent smolder is

unsteady. Because energy convected by the gas phase preheats

the solid fuel in countercurrent smolder, temperatures

encountered in this configuration are usually higher than

those in the cocurrent configuration.

An analytical model of both forced and free cocurrent

smolder combustion was presented. Propagation of the smolder

wave was assumed to be steady in a frame of reference moving

with the wave. Smoldering was represented by a finite-rate,

one-step, oxidation reaction and radiation heat transfer was

incorporated using a diffusion approximation. The

dimensionless equations were very similar to those governing
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the propagation of a laminar premixed flame. A

straightforward extension of the activation energy

asymptotics analysis presented by Williams yielded an

expression for a dimensionless eigenvalue, J_, thus

determining the final temperature, Tf. A global energy

balance then determined the smolder velocity, v. Explicit

expressions were derived for the smolder velocity, v, and

the final temperature, Tf. An approximate extinction

criterion is identified.

A model of unsteady, forced, countercurrent smoldering

combustion was also presented. Smoldering was represented

utilizing a two step mechanism consisting of a pyrolysis

reaction followed by a char oxidation reaction. A "flame"

sheet approximation was used to model the oxidation

reaction. It was assumed that pyrolysis occurs at a known

temperature, Tp. Because the two reaction zones moved at

different velocities, countercurrent smoldering was

unsteady. Two cases were considered: (i) no residual ash,

_Ma=0, and (2) an ash layer forming beneath the oxidation

zone, 9aMa_0. The residual ash served as insulation, and

its presence lead to high peak temperatures. Explicit

expressions were derived for the oxidation velocity, v, the

maximum temperature, Tm, and the pyrolysis front velocity,

Vp. Results from the cocurrent and countercurrent analyses

are summarized in the following section.
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6.2 RESULTS

Key results of the forced and free cocurrent and the

forced countercurrent analyses included:

6.2.1 Forced Cocurrent Smoldering Combustion

(1.) For a given fuel, the final temperature depends

• II

only on the initial oxygen mass flux, moi, increasing

• II

logarithmically with moi.

(2.) The smolder velocity, v, is linearly dependent on

Q II • Jl

moi and at fixed moi, increasing the initial oxygen mass

fraction, Yoi' increases v.

(3.) Steady smolder propagation is possible only for

Yoi_Ceff(Tf-Ti)/Q, with extinction occurring when all of the

energy released in the reaction zone is used to heat the

incoming gas.

6.2.2 Forced Countercurrent Smoldering Combustion

(1.) The char oxidation velocity, v, is linearly

proportional to inlet oxygen mass flux, with the

proportionality constant determined from stoichiometric

conditions.

(2.) In the absence of radial heat losses, the

pyrolysis front velocity, Vp, approaches a constant value

which is, in general, different from v.

(3.1) For the no residual ash case, in limit of long

time (t_), the maximum temperature, Tm, is determined by

balancing the energy released in the oxidation region with

the energy required to preheat the gas and radiation heat

losses.
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(3.2) When an ash layer builds below the smolder wave,

radiation heat losses from the bottom are negligible in the

limit t_ and T m is much higher than in the no ash case.

(4.) Self-sustained countercurrent smoldering is only

possible when Cg(Tm-Tp)/Qp> YoiQusMus/_oMo , and solutions

cease to exist when the energy convected by the gas phase is

insufficient to drive the pyrolysis front.

6.2.3 Free Cocurrent Smoldering Combustion

(I.) The inlet gas velocity, u i, is proportional to the

product of the gravitational acceleration, g, and ambient

pressure, Pa"

(2.) The smolder velocity, v, is proportional to the

product, gP_.

(3.1 The final temperature varies logarithmically with

the quantity, gP_.

Experiments are needed to test the predictions of the

current models. A brief discussion of possible experiments

is given in the next section.

6.3 FUTURE RESEARCH

An outline of the experimental study proposed in

Chapter 5 follows:

(i.) Experiments will focus on the countercurrent

configuration. The char oxidation velocity, v, the maximum

temperature, T m, and the pyrolysis velocity, Vp, will be

determined for polyurethane, alpha-cellulose and wood dust.

Of special importance is the identification of materials
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that leave no residual ash, for flaming combustion is less

likely in such materials.

(2.) Further experimental study of forced cocurrent

smoldering is anticipated. Both the smolder velocity, v, and

the final temperature, Tf, will be determined as a function

of the ambient pressure, Pa' at various values of the

initial oxygen mass fraction, Yoi' and the inlet gas

velocity, u i-

(3.) An extinction limit for forced cocurrent

smoldering will be identified in the parameter space

consisting of the regions Yoi>0, Pa>0 and ui>0.

(4.) For each fuel, an attempt will be made to identify

a critical temperature, Tflam e, above which flaming is

observed.

Comparisons between the results of these experiments and the

predictions of current models will be used to establish the

range of validity of key assumptions in the analyses (such

as the one-dimensional propagation approximation). Such

comparisons will hopefully lead to refinements in the

theory.
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CHEMICAL KINETICS

Reaction mechanisms are presented for the smoldering

combustion of alpha-cellulose [28], GM-25 polurethane foam

[20], wood dust [32] and cellulosic insulation [46]. Upon

being heated, the solid undergoes pyrolysis, leaving behind

a black char. Oxidation of this char provides the energy

required to sustain smoldering. A typical kinetic model

consists of at most two pyrolysis reactions and one

oxidation reaction. In all of these models, oxygen is the

only gas phase species that participates in the reactions.

The subscripts, o, us, c and a, refer to oxygen, unburnt

solid, char and ash, respectively.

A.I ALPHA-CELLULOSE

Moussa et al [28] investigated smoldering combustion

propagation in cylindrical, horizontal, alpha-cellulose fuel

elements. Degradation of the cellulose was modeled utilizing

two competing reactions,

Qus(Unburnt Solid)

and

$us(Unburnt Solid)

+ Qc_usMus --_ @cChar (A-l)

+ Qgp@usMus --_

Qgp(Gaseous Products) (A-2)



Reaction rates are of the form,

_ EIP,T

(A-3)

• Oe!

where r is the mass of solid consumed per unit volume per unit

time, Yus_s is the density of the unburnt solid, Z is the

pre-exponential factor and E is the activation energy. For

the charring reaction given in Eq.(A-I), Z= 106 sec -I,

E= ii0 kJ/mole and Qc = 0.37 kJ/(gm of fuel consumed). While

for the gasification reaction in Eq (A-2), Z= 5 X 107 sec -I

E= 130 kJ/mole and Qgp= - 0.14 kJ/(gm of fuel consumed).

Oxidation of the char was depicted by

_cChar + 9002 -_ _gp(Gaseous Products) + Q_oMo • (A-4)

Since the char is comprised primarily of carbon, the above

reaction can be approximated by C ÷ O2 -_CO 2. The oxidation

rate was based on the outer surface area of the cylindrical

fuel element. This rate is given by

• III

(A-5)," : z e ,
• Ill

where r is the mass of char consumed per unit area per unit

time, Yo is the oxygen mass fraction and Pa is the ambient

pressure. Moussa et al [28] reported that the following

paramter values gave good agreement between the predicted

and measured extinction limit: Z = 109 kg/m2atml/2sec, E =

180 kJ/mole and Q = 12 kJ/(gm of 02 consumed).
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A.2 GM-25 POLYURETHANE FOAM

Ohlemiller et el [20] modeled the smoldering combustion

of polyurethane using a two step mechanism consisting of an

oxidative pyrolysis reaction and a char oxidation reaction,

_us(Unburnt Solid) + _olO2 --_

and

_cChar + 9gpl(Gaseous Products) + Q_olMol (A-6)
)

_cChar + 9o202 --_

_aASh + _gp2(Gaseous Products) + QPo2Mo2 (A-7)

Rates of the reactions in Eqs.(A-6,A-7) are

,,,, .. __ _ _ -E/RT
(A-B)

and

•,;i (A-9)

respectively. For the pyrolysis reaction, Z= 3.92 X I0 II

m3/(kg sec) and E= 140 kJ/mole, while for the char oxidation

reaction, Z= 1.42 X i0 II m3/(kg sec) and E= 126 kJ/mole. The

energy consumed per mass of 02 consumed, Q= 7.6 kJ/gm, was

determined by matching predicted and measured smolder

velocities. Stoichiometric coefficients are given by:

VoiMol_usMuso o.oBs,VcMc/_sMus= o.ss,_o2Mo/_cMc= 082,

and _aMa//cMc = 0.27. Because the char oxidation is much
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faster than pyrolysis [20], Eqs.(A-6,A-7) can be well

approximated by

_us(Unburnt Solid) + _o02 __

_aASh ÷ _gp(Gaseous Products) + Q_oMo (A-9)

with _oMo/_usMus = 0.54 and _aMa/_usMus = 0.15. Moreover, the

rate at which the above reaction proceeds is controlled by

the (oxidative) pyrolysis rate.

p.

A.3 WOOD DUST

Leisch et al [32] utilized four reactions to model the

smoldering combustion of wood dust,

_us (Unburnt Solid) + QcgusMus--_cChar__
;

_us(Unburnt Solid)-_ 9gpl(Gase°us Products)

+ Qgpl_usMus
)

_cChar + _o02 -_aASh + QagcMc

and

_c Char + _o02 -_gp2(Gase°us Products)

(A-IO)

(A-If)

(A-12)

+ Qgp2_cMc (A-13)
B

Pyrolysis reaction rates are of the form

'' -  IRT
(A-14)

• #_,#,

where r is the mass of unburnt solid consumed per unit
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volume per unit time. For the charring pyrolysis reaction,

Z= 4 1 X 109sec -I
• , E= 105 kJ/mole and Qc = 3.7 kJ/(gm of

fuel consumed)• For the gasification reaction given in

Eq.(A-II), Z= 7.8 X 109sec -I, E= 105 kJ/mole and Qgpl = 0.14

kJ/(gm of fuel consumed)• Because the activation energies of

these two reactions are equal, Eqs.(A-10,A-II) are

equivalent to

_us(Unburnt Solid) + Qp_sMus--_

cChar + _gp(Gaseous Products) (A-15)

where _cMc/_usMus = 0.34 and Qp= 1.2 kJ/(gm of fuel consumed).

The rate of the above reaction is still of the form in -

Eq.(A-14), but with Z= 1.2 X 1010sec -I and E= 105 kJ/mole.

Oxidation reaction rates are of the form

• n/
f

)

(A-16)

where S is the surface area of solid per mass of solid. For

a packing of spherical particles, S= _/_sdp, where dp is an

average diameter. Kinetic constants for the ash producing

reaction in Eq.(A-12) are: Z= 1.0 X 104 kg/m2atml/2s, E= 126

kJ/mole and Qa = 14.7 kJ/(gm of char consumed). While for the

gasification reaction in Eq.(A-13) Z= 1.0 X 105kg/m2atml/2s,

E= 126 kJ/mole and Qa = 2.1 kJ/(gm of char consumed)• Because

the activation energies for the two oxidation reactions are

equal,
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_cChar + 2002 .-_ _aASh + _gp(Gaseous Products)

+ Q_cMc (A-17)

where QaMa/QgpMgp= 0.i and Q= 3.4 kJ/(gm of char consumed).

The reaction rate is still if the form in Eq.(A-16), but

with Z= I.i X 105 kg/m2atml/2s and E= 126 kJ/mole.

A.4 CELLULOSIC INSULATION MATERIALS

Rogers and Ohlemiller [46] employed a reaction

mechanism consisting of two consecutive oxidative reactions.

Reaction rate were of the form

: Y Z e (A-18)

For the first reaction, Z= 1013sec -I, E= 110 kJ/mole and Q--

4.2 kJ/(gm of solid consumed), and for the second, Z = 1.25 X

109sec -I, E= 165 kJ/mole and 25 kJ/(gm of solid consumed).

Ohlemiller and Lucca [19] reported that only the first

oxidative reaction is important in cocurrent smolder.

A.5 SUMMARY

Smoldering combustion was represented by a finite-rate,

one-step, oxidation reaction in the cocurrent analysis in

Chapter 2. This is a reasonable assumption for alpha-

cellulose, GM-25 polyurethane, wood dust and cellulosic

insulation. These materials have oxidation rates of the
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form

(A-19)

where £f is the density of the solid fuel. Typical

values of the reaction orders a,b,c, and d, as well as E, Q

and Z, are given in Table A-I.
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APPENDIX B

..,z

LOCAL THERMAL EQUILIBRIUM BETWEEN PHASES

In general, two energy equations must be considered,

one for the solid and one for the gas. When the solid and

the gas are in local thermal equilibrium (that is, Ts=Tg),

the analysis is considerably simplified. For not only are

empirical models for the energy transfer between phases

unnecessary, the two energy equations collapse into one

equation. In this appendix, a criterion for checking the

validity of the thermal equilibrium assumption will be

derived using a Blot number analysis.

A gas with velocity, u, flows about a spherical

particle of diameter, dp. The temperature distribution

inside the particle can be considered uniform at any given

time as long as the Biot number, Bi= hdp/k s, is much less

than one. The surroundings are at a uniform temperature, T_ ,

the particle has an initial temperature, T i, and h is the

convection'coefficient. At time, t, the tempertature of the

particle is

T- T.
•.-.-..-- :
T i -

where the response time, T = psCsdp/h'

(B-l)

measures the length

of time it takes for the particle to come into thermal

equilibrium with its surroundings. When _ is much smaller
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than the time characteristic of changes in the gas

temperature, Xc/U, the gas and the solid remain in local

thermal equilibrium. That is, Ts=Tg when

Xc k )
(B-2)

where x c is a distance characteristc of changes in

temperature. When the Reynold's number, Re= Udp/_ , is

small,

Combining Eqs. (B-2,B-3) gives

(B-3)

P

as the criterion for local thermal equilibrium. Typically,

x c _10-02m, u _i0 -3 m/s, c s _i kJ/kg and kg_0.03 W/m K. For

polyurethane, _s _1100 kg/m 3, and the criterion is

dp<<7 X 10-4m while for alpha-cellulose, _ _ 500 kg/m 3,

giving dp<<10-3m. It is evident from the electron microscope

photographs of polyurethane and cellulose in Figs.2-2A and

2-2B that the criterion for local thermal equilibrium is

approximately satisfied.



APPENDIX C

134

DERIVATION OF THE TRANSPORT EQUATIONS

C.I GENERAL ASSUMPTIONS

The distance characteristic of changes in the pore

structure of a permeable material, dp, is defined as six

times the volume of the solid phase divided by its surface

area. For a packed bed of spherical particles, dp is the

average diameter of the particles. The equations governing

smoldering combustion are amenable to analysis for a

particular range of dp. If dp is small, on the order of the

mean free path of the gas molecules, _ , the diffusion

processes become exceedingly complex. There is no hope of

using formulas as simple as Fick's law of diffusion or

Fourier's law of heat conduction. On the other hand, when dp

is large, of the same order of magnitude as x c, the distance

characteristic of changes in temperature and species

concentrations, the particles must be considered

individually [i]. When dp<<X c, the solid phase can be

considered continuous and average quantities, such as a void

volume fraction, _ , and an effective thermal conductivity,

kef f, can be defined. In the following discussion, it is

assumed that _ << dp<< x c.
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C.2 CONSERVATION OF ENERGY

The solid phase and the gas phase are assumed to be in

thermal equilibrium - that is, Ts=Tg. A criterion for

checking the valididty of this approximation is derived in

Appendix B. Consider a volume of space, V , that is

stationary relative to the laboratory. The boundary of V is

A. Neglecting the work done by viscous forces, the

conservation of energy requires that

rate of

accumulation

of internal

and kinetic

energy

net rate

of internal

and kinetic

energy transport out

by convection

net rate

at which

energy
diffuses

out

where

the rate at

which the gas

does work against

surface and body
forces

+

I the rate at

which energy
is released

by chemical
reactions

(gas+solid) internal

and (gas) kinetic

energy stored in V

internal and kinetic

energy of the gas

phase convected out
^

,,4

V
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energy diffusing out

the rate at which the

gas does work against

static pressure

the rate at which

gravity does work
on the gas

dV

V

r
the rate at which |
energy is released by " ]chemical reactions

In differential form, conservation of energy gives

5, "

When the Dufour effect, energy transfer due to concentration

gradients, is unimportant, the heat flux is

_b _%
(C-2)

The effective thermal conductivity, keff= _kg+(l- _)k s,

accounts for energy transfer due to conduction in both solid

and gas phases. Neglecting chemical energy, the internal

energy of the solid phase is
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T

e5 i

and the gas phase enthalpy is

T_ C% dT

(C-3)

(C-4)

T(

where Cg is the gas specific heat (at constant pressure). In

most smolder applications, the work done by gravity and the

(kinetic and internal) energy stored in the gas phase are

negligible [i]. Typically, the ratio of the work done by

gravity to the energy convected by the gas, Xcg/CgT i, is of

_(I0-7), the ratio of the gas phase kinetic energy to the

energy convected by the gas, u2/cgTi , is of _(i0-ii), and

the ratio of the internal energy stored in the gas to that

stored in the solid, _g/(l-_)_ s, is of _(0.02). Equation

(C-l) now gives

(C-5)

which is the basis for Eq.(9) in Chapter 2 and Eqs.(4,5) in

Chapter 3.
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C.3 CONSERVATION OF SPECIES

C.3.1 Gas Phase

Conservation of gas phase species requires

the rate

at which

species i

accumulates

m

Ithe net rate a_l _ generation of

which species " [ the rate of

is convected _ | species i (by

out of V [chemical reactions)

where

the mass of species i

stored in V

V

mass of species i
convected out

I ..%
: _ .

V

the rate at which species i

is generated

n

i . IIwi% aV
Y

In differential form, conservation of species requires

• II

When the Soret effect, mass transfer due to temperature

gradients, is unimportant, pressure gradient diffusion is

negligible and the binary diffusion coefficients of all

pairs of species are equal, the diffusion velocity can be

(C-6)
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approximated by [2]

(C-7)

Equations {C-6,C-7) are the basis for Eqs.(6,8) in Chapter 2

and Eq.(6) in Chapter 3.

C.3.2 Solid Phase

Noting that the solid is stationary in the laboratory

frame of reference, conservation of solid species requires

rate at which]

species i |

accumulates J

the rate at which l

_species i is generated|

_by chemical reactions_

where

the mass of species i

stored in V

the rate at which species i

is generated

i (t- )Ps av
W

i , II

%1

In differential form, conservation of solid phase species

gives

o (C-8)

which yields Eq.(7) in Chapter 2 and Eq.(8) in Chapter 3.
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Experimental Observations of the Effect of Pressure
and Buoyancy on Cellulose Co-current Smoldering

J. h Newlmll, A. C. Fernaudez-PeHo and P. J. Pagnl
Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA

Anexperimental studyhas beenperform_ to determine the poteulhdeffect of buoyancy on the rate of propagation of •
e_t smolder rent•ion through • porous solid fuel, and the range of flow velocities where Imoyancyeffects are
signilkant./n tbe co-currentsmolder reaction, •befnei and oxidlzer enter dm renctionzone from the same direction. In
the presentexpmiments this is accomplishedby initiating tie reaction at the top of the fnel bed,a-ceHulasepacked st a
void fraction 0.85, so that the smolder wave propagates downwardopposing an upwardforced flow of air. Since in •
stratil_d density field, beoytncy is proportlommito theproductof gravityanddensity4ilerence, Imoyancy c=mbe
controlled by varyingeither the gravityv_-tor or the gas density. I• this studythe latter method is followed, varyinggas
densitythroughtheambientpressurestwhichthe experiments are performed.Thesmolder velocity is measur_ for air
flmvrat• varyingfrom 0.2 to 6gm-2s -x at oums_lu_ambiemt lm_Ssii_ of 0.6, 0J_end I at•. l"ncrmulWs_nv dmt for
flow rates larger than I g m- =s" t the smolder velocity increases linearly with the air flow rate Imt is independentof
pressure. The r_ction peak tempemnne is weakly dependenton flow rate and independentof pressure.For the present
expevim_mtalconditionsthe effect of buoyancy is only observed at very low air flow rates, The mechanisms by which it
affects the smolder process appears to be by altering the transport of air to the reaction zone from upstream and
downstream of the reaction.

INTRODUCTION

Smoldering is defined as a non-flaming, exothermi¢,
surface reaction that propagates through a porous com-
bustible material, t,z Although this form of combustion is
present in a variety of practical combustion processes, it is
particularly important in the fire-safety field because of its
role in the initiation of fires. Fires are often triggered by a
sudden transition from a slow smoldering reaction to
rapid flaming, quickly involving adjacent materials. Fur-
thermore, since it may take place in the material interior
and be of low intensity, it can progress undetected for
long periods of time, and be difficult to suppress because
the porosity of the material prevents the access of the
extinguishing agent to the reaction zone. Thus the under-
standing of the physical and chemical mechanisms con-
trolling smoldering is important not only because
smoldering is a fundamental combustion process but
because such understanding can be critical to the pre-
vention and control of destructive fires.

The basic mechanisms of smolder propagation are
fairly well understood: The heat released during the
heterogeneous oxidation of the solid is transferred
toward the virgin material by conduction, convection and
radiation, supporting the propagation of the smolder
reaction. The oxidizer in turn is transported to the
reaction zone by diffusion and convection. These trans-
port mechanisms influence not only the rate at which the
smolder reaction propagates but also the limiting pro-
cesses of transition to flaming and extinction. Smoldering
is customarily ciassified into co-current and counter-
current configurations, according to the direction in
which the fuel and oxidizer enter the reaction zone. [n the

0308-0501/89/040145-06505.00
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reference frame of the reaction zone the fuel and oxidizer
enter the reaction from the same side in co-current
smolder, while in counter-current the fuel and oxidizer
entei" from opposite sides.

Buoyancy can play a significant role in the above
transport mechanisms because of the gas density strati-
fication at the reaction zone. Under natural convection
conditions, buoyancy interacts with the transport of heat
and mass by diffusion. At low forced-flow velocities it
interacts with both diffusion and convection. This leads
to another classification of smoldering according to
whether the propagation of the smolder front is in the
same direction (downward) or opposite direction (up-
ward) as the gravity vector. Most of the experimental
work that has been done in the past on smoldering
combustion has focused in analyzing the effect oxidant
composition and velocity on the smolder reaction
rate. 3-9 Except for the work of Dosanjh et al., I° which
has a limited scope, no systematic study has been done to
date of the effect of buoyancy on the smolder combustion
process. This is the objective of the present investigation.

Experiments are performed to study the effect of the
mass flow rate of oxidant and of the buoyancy force on
the propagation velocity and reaction temperature of a
downward, co-current, forced-flow smolder reaction. The
porous combustible is =-cellulose with a fix void fraction
and the oxidant is air. In the experiment the buoyancy
force is controlled through the ambient pressure, accord-
ing to the relation g(p=-p_)~gP(Tb-T,), where the
subscripts u and b indicate unburnt and burnt gas
conditions. Since the reaction rate can also depend on
pressure, the method is best applicable when the chemical
reaction is not strongly dependent on pressure As will be
shown later, this appears to be the case for smolder
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combustion, thus facilitating the interpretation of the
experimental results.

EXPERIMENT

A schematic diagram of the experimental installation is
shown in Fig. 1. It consists of a one-dimensional, forced-
flow, co-current smolder apparatus and the supporting
instrumentation. The apparatus is contained in a pressure
vessel 1.8 m in diameter and 3.3 m long that is used to
control the experiment pressure. Acryfic windows located
at oppositesides of the vessel provide optical access to the
test area. The test section containing the porous com-
bustible is a 0.12 m in diameter by 0.16 m high vertically
positioned pyrex cylinder. The diameter was selected to
reduce any two-dimensional effects to a minimum while
maintaining a laboratory scale. To ensure uniform air
flow through the test section, the lower end of the cylinder
is taperedand filled with gIass beads. A wire mesh sits on
the beads and also supports the fueL Small holes placed
longitudinally along the side of the cyfinder allow the
positioning of thermocouples in the porous material.

The air flows into the test section from a 51 settling
tank that is used to provide enough differential pressure
to overcome the losses through the flow lines and flow
meters. The air-metering system is composed of a Tylan
Corporation 1-3 1min- _mass flow meter and controller.
The air pressure in the lines after the flow meter and in the
test section is slightly above (of the order of 10 Pa) that in
the vessel. To keep the vessel pressure constant during the
tests and to avoid the flow of combustion products
through the vessel main vacuum pump, the exhausts from
the test section are collected in a hood and removed from
the vessel with a second, smaller, vacuum pump. The
vessers pressure is continuously monitored during the
experiments to ensure that the balance between the inlet
and outlet flow is maintained.

The fuel (_-cellulose in these experiments) is pre-
weighed and placed into a fixed volume in the pyrex
cylinder to maintain a constant void fraction of 0.85
throughout the experiments. Five chromel-alumel
thermocouple probes 0.8mm thick (wire diameter
0.12 mm) extending horizontally into the center of the fuel
bed are placed 2 cm apart, with the first thermocouple
located 2 cm beneath the top of the fuel bed. The thermo-
couples are connected through a multiplexer to a real-
time data-acquisition system, which stores and converts
the thermocouple emfinto temperature. The temperature
histories from each thermocouple are used to calculate
the smolder velocity from the lapsed period of smolder
reaction passage and the distance between thermocou-
ples. The computed velocity is an average value. At near-
extinction conditions, the peak temperature decreases as
the smolder front propagates into the fuel bed (Fig. 3). In
those cases only the data from the first two thermo-
couples were used to calculate the smolder velocity. The
combustion of the cellulose is initiated at the top of the
fuel bed with a methane flame that impinges uniformly on
the fuel. The methane is spark ignited with a high-voltage
induction coil. Initially flaming occurs but quickly dies
down and smoldering commences. The smolder reaction
propagates downward opposing the air flow, which is
forced upward through the porous combustible. The
resulting smoldering configuration is therefore of the
downward, co-current type.

RESULTS AND DISCUSSION

Measurements are performed of the velocity of down-
ward co-current smolder propagation through cellulose
for air mass flow rates ranging from 0.2 to 6 g m - ' s- _ for
fixed pressure levels of 0.6, 0.8 and 1 atm. Two character-
istic examples of the temperature histories from each

Figure 1. Schematic of experimental installation.
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thermocouple are presented in Figs 2 and 3. The case of
Fig. 2 corresponds to a vigorous, constant-velocity, smol-
der reaction. Figure 3 corresponds to a reaction that is
weakening as it propagates through the cellulose and that
eventually extinguishes probably for lack of oxidizer. The
temperature profiles show how the fuel temperature
increases as the reaction zone approaches the thermo-
couple location. As the reaction proceeds past the
thermocouple a peak in temperature is recorded. This
temperature is defined in this work as the smolder
reaction temperature. After passage of the reaction, the
temperature decreases due to heat loss&; through the test
section walls and downstream to the environment. After
the reaction zone has reached the bottom of the fuel a
second temperature peak is often recorded, generally
beginning with the lowest thermocouple. This seems to
indicate the onset of a backwardly propagating second-
ary reaction involving the residual chat.

The arrival of the smolder reaction at the therrno-
couple position is characterized by the maximum in the
temperature profile. This maximum, however, is not well
defined, which introduces inaccuracies in the definition of

the smolder front arrival time and, consequently, in the
calculation of the smoldering velocity. However, if for a
given flow rate and pressure the smolder velocity is
constant, the measured temperature profiles at each
therraocouple location have approximately the same
slope. Thus the time for the reaction zone to pass from
therrnocouple to thermocouple may be calculated by
defining a reference temperature common to all the
temperature profiles. The reference temperature used in
this work was 500°C. The displacement times are then
averaged and divided by the known distance between
thermocouples to calculate the smolder velocity. The
method is not applicable when the smolder velocity is not
constant, as is the case represented by the temperature
profiles of Fig. 3. These cases require a careful exam-
ination of the temperature profiles to interpret the cha-
nges that are occurring in the smolder reaction. Since the
velocity is not constant, only the first two thermocouples
are used to calculate the smolder velocity.

The variation with the air mass flow rate of the
measured smolder velocity is presented in Fig. 4 for the
three ambient pressures used in these experiments, It is
seen that the smolder velocity is approximately linearly
proportional to the air mass flux at least for flow rates
larger than I gm-" s- 1.This linear relationship is in agree-
ment with the theoretical predictions of Rogers and
OhlemiHer 3 and of Dosanjh and Pagui_. _ for forced flow
co-current smolder. For mass flow rates less than I g
m-" s- 1 the smolder velocity appears to level off, deviat-
ing from the linear relationship. This is an indication that
at this low flow rate buoyancy may have some effect on
the smolder process and that the transport of mass and
heat may be controlled by mixed rather than forced
convection. A mechanism that may be very important at
these flow rates is the convection and diffusion of air from
the top back toward the reaction zone. The convection
currents are buoyantly generated by the raising post-
combustion gases and the diffusion is the result of the
difference in oxygen concentration between ambient and
the smolder zone.

Results of Fig. 4 also show that for mass flow rates
larger than 1 gm" 2s- l, the smolder velocity is practically
independent of ambient pressure at least for the present
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experimental conditions and range of pressures tested.
For low flow mass rate it seems that there is a weak
pressure dependence of the smolder velocity which in-
creases slightly as the pressure is increased, although the
data scatter raises questions about the inferred trend.
These results indicate that the smolder reaction itself is

not very sensitive to gas pressure and that the observed
pressure effect at the lower flow rate is due more to
transport mechanisms (i.e. buoyancy) than to chemical
kinetic mechanisms.

The dependence of the smolder reaction temperature
on the air mass flux is presented in Fig. 5 with pressure as
a parameter• The scatter in the data is due to the difficulty
of defining the smolder reaction temperature, chosen here
as the maximum temperature, and to experimental errors
inherent in the technique used to measure the temper-
ature and in the difficulty of packing the cellulose uni-
formly• These errors include the use of relatively thick
thermocouples, the presence of heat losses through the
thermocouples leads and uncertainties in the contact of
the thermocouple junction with the porous cellulose. For
this reason, the temperature data should be used to
analyze relative effects and not absolute values. The
temperature data of Fig. 5 reveals a moderate dependence
of the smolder reaction temperature on the air mass flow
rate, decreasing as the flow rate decreases. This result
agrees qualitatively with the predictions of Dosanjh and
Pagni. It With regard to the dependence of the temper-
ature on the gas pressure, no systematic variation is
observed within the scatter in the data. Only at very low
air flow rates there is indication of a possible weak
dependence of the smolder temperature on pressure,
decreasing as the pressure decreases.

The weak dependence of the smolder velodty and
smolder reaction temperature on the ambient pressure
are indicative that the smolder reaction itself may only be
weakly dependent on pressure, at least for the range of
pressures tested. The observation of Dosanjh et ai. _° that
smolder occurs at ambient pressures as low as 0.4 atm
provides further confirmation of the above conclusion.
The weak dependence of the smolder reaction on pressure
may be the result of the surface reaction characteristics of
the smolder process, which limits the dependence of the
reaction rate on the gaseous species concentrations to

that of the oxidizer only. Another possibility is that since
the smolder process is limited by the oxygen supply rate,
the kinetics of the oxidation process does not have a
strong influence on the rate of smolder propagation.

The weak dependence of the temperature on pressure
permits the direct interpretation of the experimental data
in terms of the variation of the smolder velocity with
buoyancy. Assuming ideal gas behavior, the buoyancy
force can be calculated through the relation 0(Pu-Pb)
~gP(Tb--Tu), where the subscript u indicates ambient
conditions and subscript b the conditions after smolder
reaction passage. Thus the data from Figs 4 and 5 in
conjunction with the above expression can be used to
deduce the dependence of the smolder velocity on the
buoyancy force. The results are presented in Fig• 6, with
the air mass flux as a parameter. It is seen that buoyancy
does not appear to influence the smolder velocity except
for very low mass flow rates, where the data indicate a
weak dependence of the smolder velocity on buoyancy,
decreasing as buoyancy decreases. Thus it can be conclu-
ded that for the present experimental conditions,
buoyancy has ordy a minor influence on the smolder
process, and that theoretical models of forced-flow co-
current smoldering are applicable to describe the ex-
periments. The small influence of buoyancy on the pre-
sent experiments is understandable since the propagation
of the smolder front is practically unidimensional, the
density stratification is such that gravity has a stabilizing
effect, and the motion of the air through the cellulose is
deterred by its low porosity. The role of buoyancy should
become more important as the void fraction of the fuel is
increased or the direction of smolder propagation is
changed. With cellulose, however, it is difficult to attain
larger void fractions or to perform the experiments for
upward propagation.

The present experimental results can be used to com-
pare the predictions of the theoretical models of forced
flow c(>-current smolder because of the minor role that

buoyancy places on the process. The analysis of Dosanjh
and Pagni tt gives the following expression for the smol-
der velocity in terms of the air mass flux:

• ttQ Yo m, m_
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where F, is the smolder velocity and n_' the air mass flux.
For the application of Eqn (1) to the present experiments
the following data are used:7' _ocellulose void fraction 0
= 0.85: cellulose density P,i = 620 kg m- 3; oxygen mass
fraction Yo--0.23; effective specific heat ccf=l kJ
kg-_ °C; reaction temperature Tb = 600°C; ambient tem-
perature T_=20°C; the heat of combustion Q for a
cellulose smolder reaction is not well known. Its value for

a flaming reaction is around 12 500 kJ kg-1.7 However,
Ohlemiller et al.s"12 suggest a considerably lower value.
Substitution of the above values in Eqn(l) gives a
smolder velocity of V_ffi37 &" in comparison with the
experimental value of V_= 11 r/_'. If a heat of combustion
of Q -- 6000 kJ kg- _ is used, excellent agreement is ob-
tained between the theory and the experiments. The
noted differences in the heat of combustion may be due to
the fact that the amount of char consumed affects the
calculated value for Q, and this amount is experiment
dependent.

Although the value of the heat of combustion has a
major influence on the predictions of Eqn (1) there are
also other differences between the model and the ex-
periments that can explain the quantitative differences
between the predicted and measured smolder velocity.
One is the assumption that the char temperature remains
constant and equal to the reaction temperature. The
experiments, however, show that the temperature drops
significantly downstream from the reaction zone (Figs 2
and 3). How quickly and how much the temperature
drops seems to depend mainly on the air flow rate. At
higher flow rates there is sharper and larger fall in
temperature than that found at lower flow rates. This
seems to be related to the amount of fuel consumed by the
smolder reaction and consequently to the residual mater-
ial left after the smolder reaction passage. At high mass
fluxes there is less residual char/fuel behind the smolder
front to insulate the reaction zone. The larger heat losses
result in larger temperature drops downstream from the
smolder reaction, contrary to the model assumption that
the residual material totally insulates the reaction zone.
The heat losses to the environment result in lower
smolder velocities than those predicted by the model.

Another effect to consider is the assumption in the
model that all the oxygen is consumed by the smolder
reaction. However, it is not certain that this is true in the
experiments, particularly at the higher air fluxes, where
all the fuel is consumed and only ash is left behind the
reaction. Thus the reaction may not always be oxygen
limited as assumed in the model, which also will result in
smolder velocities that are lower than those theoretically
predicted. Finally, there is the possibility that the actual
fuel void fraction is dependent on the air flow rate,
increasing with it, which would affect the comparison of
the experiments and theory.

CONCLUSIONS

combined result of a relatively low fuel void fraction and
the stabilizing influence that gravity has in this smolder
configuration. The effect of buoyancy is only observed at
very low mass fluxes, which is understandable since
inertial forces are then at a minimum. The mechanism by
which buoyancy affects the smolder process is, however,
not evident: One possibility is the generation of flow non-
uniformities due to heat losses to the walls or irregu-
larities in the fuel distribution, which would be enhanced
by the gravity. Another potential mechanism is the
diffusion and convection of air from the top to the
reaction zone. This transport process can only occur at
very low forced mass fluxes, when the upward forced
convection cannot totally counteract the downward dif-
fusion and convection of air to the reaction zone. The

resulting smolder reaction would be a mixed co-current
and counter-current d0wnward-propagating reaction.

The above mixed type smolder reaction is quite inter-
esting, since it is likely to occur in practical situations. To
observe the relative effect of the transport of air from the
top to the reaction a few experiments were performed
where an inverted funnel was placed over the test section
to accelerate the hot downstream gases and in that way
prevent the downward diffusion and convection of air to
the reaction. The result was a noticeable reduction in the
smolder velocity for a mass flux of 0.5 gm -2 s- x,and the
eventual extinction of the reaction for a mass flux of
0.2 gm -2 s- 1 and a gas pressure of 0.6 arm. The temper-
ature histories for this last case are those presented in
Fig. 3. The temperature profiles show that the smolder
reaction was strong when it reached the first thermo-
couple but that as it progressed downward through the
cellulose it weakened. This is evident because the smolder
propagation slowed down, the reaction zone widened and
the temperature decreased. Finally, at the approximate
location of the fourth thermocouple the reaction did not
sustain itself and extinguished. This decay of the smolder
reaction as it propagated downward through the cellu-
lose clearly demonstrates that diffusion and convection
from the top can contribute to sustain the smolder
reaction. Their contribution, however, is limited by the
build-up of the residual ash/material layer behind the
propagating reaction. As this layer grows, or becomes
denser, the access of air to the reaction from the top
become increasingly restricted until finally the reaction
must depend only on the upwardly forced air flow. If this
flow is not enough to sustain the reaction, extinction will
occur.

It should be again emphasized that the results of this
work, particularly those related to the effect of buoyancy,
are dependent on the experimental conditions. For ex-
ample, it is likely that increasing the fuel void fraction, or
the oxidant oxygen concentration, will vary the nature of
the results. This is because in the former case the drag
force would decrease and in the latter the density differ-
ence would increase, which in both cases would result in a
more favorable situation for the establishment of natural
convective flows.

The experiments conducted in this work on the down-
ward propagation of a forced-flow, co-current smolder
reaction through porous cellulose show that buoyancy
has a minor influence on the propagation velocity and
temperature of the smolder reaction. This seems to be the
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ABSTRACT

An experimental study is carried out to determine the effect of buoyancy on the propaga-
tion velocity of a free convection smolder reaction through a porous combustible material.
Measurements are performed of the smolder velocity through polymethane foam as a function of
its location in the sample, the sample size, and the direction of propagation. The smolder velo-
city is obtained from the temperature histories of thermocouples placed at fixed intervals along
the fuel centerline. Upward and downward burning free convection experiments show that
buoyant forces cannot overcome the drag forces in specimen longer than 50 ram. Even in speci-
men longer than 50 mm extinction did not occur, indicating that the air inside the fuel pores pro-
rides enough oxidant for the smolder process to self-sustain. This conclusion is particularly
important for a space based environment where gravity and consequently buoyancy could be
negligible.

INTRODUCTION

Smoldering is defined as a non-flaming surface combustion reaction propagating through a
porous fuel [1]. Although present in a variety of combustion processes, it is of particular interest
in the fire safety field because of its role as a potential fire initiation source. Smoldering
combustion is an oxygen-limited phenomenon which once established it is very difficult to extin-
guish. Circumstances that would suppress flaming often favor smolder and it is even possible
for a smoldering combustion process to propagate and persist in the absence of any convection
(forced or free), therefore it represents a serious fire hazard. Smoldering involves complex
processes related to fluid mechanics and heat transfer in a porous media together with surface
chemical reactions. Physical factors like fuel surface area per unit volume, permeability to gas
flow, rate of heat loss from the reaction zone, and the nature of the ignition source are important
in determining the smolder characteristics because they affect the controlling mass and heat tran-
sport processes. Chemically, the porous combustible material can sustain complex surface reac-
tions that produce heat and combustion products. The interaction between the physical and
chemical processes determines the final characteristics of the smolder reaction.

Most of the work that has been done to date on sn_ldering combustion has concentrated in
analyzing the effects of oxidant composition, velocity and pressure on the smolder reaction [2-
8]. The works of Refs. [9,10] are the only ones that specifically address the problem of the
potential influence of buoyancy on the smolder reaction. In those works powder Cellulose was
used as combustible porous materiaL The present study is a continuation of the above works,
and has as objective to experimentally observe the effect of buoyancy on free convection, co-

current, smoldering combustion of Polyurethane foam. The interest of using this material is two-
fold; it is a commonly used material, and its structure permits upward burning experiments
without collapsing problems as it occurs with Cellulose or other lose materials. The study of
buoyancy effects on smoldering is accomplished here by comparing the smolder characteristics
of downward and upward smolder propagation. The smolder velocity and temperature are meas-
ured at different locations in the sample and compared for different sample sizes and for both
orientations.

EXPERIMENT

The fuel used in the experiments is an open cell, unretarded, white polyurethane foam, with
a 26.5 Kg/tn 3 density and 0.975 void fraction. The porous fuel is contained in a vertical paral-

lelepiped consisting of an aluminum frame and insulation Fiberfax walls whose basic composi-
tion is alumina-silica and binders. The parallelepiped dimensions are varied to determine the

ORIGINAL P/_E IS
OF POOR QUALITV



-2-

effect of scale on the smolder process. The wall material was selected for insulation purposes in
an attempt to ensure a one dimensional smolder spread in a region of at least 50 mr- in diameter
.from the sample ccnterline. The foam ignition is accomplished with an electrically heated
igniter placed in close contact wlth the foam. The igniter is made of a nichrome wire placed in
between two, 1 cm thick, porous ceramic honeycomb plates that provide n.'gidity to the igniter

and heating uniformity. To insulate _e i gni_on zone and simulate an ongoing smolder process,
a layer of char from an already smomerea oam is placed at the other side of the igniter. The
foam ignition requires a supply of i0.3 Jlmm 2 for approximately I0 rain. Most of this energy is
used to heat up the igniter ceramic plates.

Eight Chromel-Alumel thermocouples 0.8 mm in diameter are embedded at predetermined
positions in the porous fuel with their junction placed in the fuel centertine. The rate at which
smolder spreads is measured from the temperature histories of the thermocouples, and is calcu-
lated from the time lapse of reaction zone arrival to two consecutive thcrmocouples and the
known distance between the thcrmocouples. This velocity is assigned to be the smolder propa-
gation velocity at the mid point between the two thermocouples. The arrival of the reaction zone
is characterized by a maximum in the temperature profile. However, under most experimental
conditions this maximum is not sharply defined, and the location of the solder zone is obtained
by drawing tangents to the temperature curves and cutting them by a line at a temperatm'e near to
the maximum (350°C in this work). The smolder velocity is calculated from the time lapse
between two consecutive intersections.

In the downward smoldering experiments the foam is ignited at the top and the smolder
propagates downward, and in the upward smoldering ones the foam is ignited at the bottom and
the smolder propagates upward. In the former case, the igniter/char layer minimizes the income
of air from the top, so air is expected to be naturally induced firom the bottom toward the reac-
tion zone and products to leave pass the char toward the top. In the latter case the air is expected
to come also from the bottom but flowing through the char layer toward the reaction zone, and
the products to flow through the foam toward the top.

RESULTS

Experiments are performed for samples with square cross section 152 mm in the side and
heights of 125 ram, 150 ram, 175 ram, 200 ram, and 300 mm (smaller samples were also tested
but the results were so influenced by the end effects that did not provided useful information).
The measured smolder propagation velocities at different positions along the sample are
presented in Fig. 1 for downward and in Fig. 2 for upward smoldering. The origin of the x-axis
(labeled Depth) corresponds to the ignition plane. Fig. 1 shows that in downward smoldering
there is an initial zone, approximately two inches deep, where heat wansfer from the igniter
results in a slightly higher smolder velocity than in the sample center. This zone is followed by
another one where an approximately constant smolder velocity is observed. The length of this
region increases with the foan_, length. Then there is a final zone two inches deep that is charac-
terized by a smmg increase m the smolder veloci.ty. For upwani burning (Fig. 2) it can be
observed a slightly longer igniter affected zone that Is followed by another zone were the spread
rate stays almost constant, and again a final zone were the smolder velocity increases sharply.

For downward smolder, the buoyant plume generated by the hot combustion gases is not
able to overcome the pressure drop created by the foam in the initial two zones, therefore the
reaction sustains itself by mainly using the air contained inside the foam pores. The smolder
velocity in these zones becomes smaller when the length of the sample is increased, which indi-
cates that there is always a small amount of air flowing through the fuel from the bottom, either
by diffusion or natural convection. In the last two inches of foam the buoyant plume is able to
overcome the pressure drop and naturally induced air reaches the reaction zone, enhancing its
smolder propagation velocity.

For upward burning, the reaction products are not able to push their way upward out of the
foam, and thus the oxygen cannot be buoyantly drawn from the bottom due to the elevated pres-
sure generated inside the foam by the trapped products. The products dilute the oxygen
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concentration in the foam porous, and therefore a decrease in the reaction rate along with a
decrease in the smolder velocity occurs. The temperature distributions along the fuel sample
presented in Fig. 3 clearly show that for upward smolder there is a decrease in the reaction tem-
perature along the middle region of the sample. However, in this configuration the products also
preheat a larger region of the unburnt fuel. The balance between the lower smolder temperature
and the larger preheated region results in an almost constant spread rate, as it is shown in Fig. 4.
Finally, as the fuel is burnt the pressure drop inside the foam decreases letting air flow through
the sample and thus increasing the oxygen concentration and consequently the smolder tempera-
ture and velocity.

It is important to note that for small samples the end effect is going to be similar for both
upward and downward smolder. However, as the size of the sample is increased the buoyant
forces become larger in the upward case, which results in an earlier overcome of the pressure
drop and an earlier increase in the smolder velocity (Fig. 4). It should be also pointed out that
the larger smolder velocities in the constant zone obtained for the 300 mm sample are due to end
effects caused by draft in the hood were the experiments are conducted and not to an actual fuel
geometry effect. In this case the sample was too long for the hood being used in the tests and the
influence of the drafts that the hood generates was bigger than in the other smaller samples. A
series of experiments were also carried out without the char layer at one of the igniter sides. For
both downward and upward configurations smoldered self-sustained initially; the downward
smolder with a constant velocity of 5.10 -_ cm/sec until it extingui__ed due to heat losses, and the
upward with a decreasing rate that reached a minimum of 1 x lO "_ em/sec before extinguishing
due to depletion of oxygen and heat losses.

CONCLUSION

The results of this work show that for the present fuel and test conditions buoyancy has
only a limited role in one dimensional smolder combustion because the buoyant forces generated
by the postcombustion gases are not capable of overcoming the pressure losses generated in the
porous fuel interior. They also show that the air contained in the fuel pores is capable of sustain-
ing a smolder reaction that. although weak, is self-propagating. Under these conditions both
upward and downward co-current smolder have similar smolder velocities. This result is of par-
ticular interest for the prediction of smolder in a space based environment.
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ABSTRACT

An experimental study is carried out of the effect on the

propagation velocity of a smolder reaction of a forced flow of
oxidizer opposing the direction of smolder propagation. The

experiments are conducted with a high void fraction polyurethane
foam as fuel and air as oxidizer, in a geometry that approximate-

ly produces a one-dimensional smolder propagation. Measurements
are performed of the smolder propagation velocity and smolder

reaction temperature as a function of the flow velocity, location

in the sample and direction of propagation (downward and upward).
For both downward and upward smoldering three zones with distinct

smolder characteristics are identified along the foam sample. An

initial zone near the igniter were the smolder process is influ-

enced by heat from the igniter, an intermediate zone where smol-
der is self-sustained and free from external effects, and a third

zone near the sample end that is strongly affected by convective
currents. The smolder reaction propagation velocity and tempera-

ture have a direct correspondence and are different in each one

of these three zones. The variation with the opposed forced air

flow of the smolder propagation velocity and temperature shows

that both parameters reach a maximum at flow velocities of ap-

proximately 2.5 mm/sec. The analysis of the results confirm that
the smolder process is controlled by the competition between the

supply of oxidizer to the reaction zone and the loss of heat from
the reaction zone. At low flow velocities oxygen depletion is the

dominant factor controlling the smolder process, and the smolder

velocity and temperatures are small. Increasing the flow velocity

strengthens the smolder reaction resulting in larger smolder
velocities and temperatures. At even larger flow velocities

convective cooling becomes dominant causing the extinction of

the smolder reaction. These competing mechanisms play a very

important role in the end region of the sample where buoyancy

generated currents result in the strong enhancement of the reac-
tion or in its extinction, depending on whether oxygen supply or

convective cooling is the controlling smolder mechanism. Compari-

son between downward and upward smoldering corroborates the above

observations.

2



INTRODUCTION

Smoldering is defined as a non-flaming, surface combustion

reaction propagating through a porous fuel [i]. Although present

in a variety of combustion processes, it is of particular inter-

est in the fire safety field because of its role as a potential

fire initiation source. Smoldering combustion is a weakly react-

ing phenomenon which once established is difficult to detect and

extinguish because it propagates through the interior of the

fuel. Circumstances that would suppress flaming often favor

smolder and it is even possible for a smoldering combustion
process to propagate and persist in the absence of any convection

(forced or free), therefore it represents a serious fire hazard.

Smolder involves complex processes related to fluid mechanics and

heat transfer in a porous media, together with surface chemical

reactions. Physical factors like fuel surface per unit volume,

permeability to gas flow, rate of heat loss from the reaction

zone, and the nature of the ignition source are important in

determining the smolder characteristics. Chemically the porous

combustible material can sustain complex surface reactions and

produce heat and combustion products. The interaction between the
physical and chemical processes determines the final characteris-
tics of the smolder reaction.

Most of the work that has been done to date on smoldering

combustion has concentrated in analyzing the effect of oxidant

composition, velocity and pressure on the smolder reaction [2-9].

The present work is part of an ongoing study that has as objec-
tive understanding the effect of buoyancy on the smolder process.

It extends the works of Refs.[10,11] which used powder cellulose

as combustible porous material, and studied the effect of buoyan-

cy on the smolder process by changing the environmental condi-

tions. Here Polyurethane foam is used as fuel, and the effect of

buoyancy is determined by comparing the smolder parameters in

downward and upward propagation. The interest of using this

material is two fold; it is a commonly used material, and its

structure permits upward burning experiments without collapsing
problems as it occurs with cellulose and other loose materials.

The experiments are conducted in the opposed flow configura-

tion, for both downward and upward smolder propagation . In this
type of smolder the reaction zone and the forced oxidizer flow

move in opposite directions. This type of smoldering is also

referred to as co-current smoldering because if the reaction

front is considered as stationary both the fuel and oxidizer

reach the reaction zone in the same direction. In the downward

smoldering experiments the foam is ignited at the top and smol-

der propagates downwards, and in upward smoldering the foam is

ignited at the bottom and thesmolder propagates upward. In

downward smoldering the gravitational acceleration is in the same

direction as that of smolder propagation, and for upward smolder-

ing in opposite directions. Therefore, when the upward and



downward experiments are compared, the difference between the two
can be attributed to gravity.

EXPERIMENT

A schematic diagram of the experimental installation is

shown in Fig. i. The porous fuel is contained in a 300mm long

vertical duct with a 150mm side square cross section. The duct

walls are made of insulating 10mm thick Fiberfax sheet mounted on

an aluminum frame.. The oxidizer gas flows to the test section

through a diffuser fitted at one end of the duct, after being

metered with a Tyland mass controller. The fuel ignition is

accomplished with an electrically heated igniter placed in close

contact with the foam. The igniter consists of a Nichrome wire

placed in between two, 5 mm thick, porous ceramic honeycomb

plates that provide rigidity to the igniter and heating uniformi-
ty. To insulate the ignition zone and simulate and ongoing smol-

der process, a layer of char from an already smoldered foam is

placed at the other side of the igniter.

The foam ignition is accomplished by applying an electrical

energy of I0 J/mm2 for approximately 15 min. Most of this energy

is used, however, to heat up the igniter ceramic plates to an

approximate temperature of 400 C. During this heating period the
air flow is turned off to avoid the flaming of the char or even

the virgin material. The heating period is selected to ensure the

self supported propagation of the smolder reaction. Once the

ignition heating period is completed, the igniter current is
turned off and the flow of air is turned on initiating the self

sustained smolder process.

The rate of smolder propagation is obtained from the temper-

ature histories of eight Chromel-Alumel thermocouples 0.8 mm in
diameter that are embedded at predetermined positions in the

porous fuel with their junction placed in the fuel centerline.

The smolder velocity is calculated from the time lapse of the
reaction zone arrival to two consecutive thermocouples, and the

known distance between the thermocouples. The arrival of the

reaction zone is characterized by a maximum in the temperature

profile, although under most experimental conditions this maximum
is not sharply defined. For this reason the location of the

smolder zone is defined by the intersection of the tangent to the

temperature curve at the inflexion point and a horizontal line

at a temperature near to the maximum (350 C in this work).

All the experiments are conducted with 150mm side cubes of

an open cell, unretarded, white polyurethane foam, with a 26.5
Kg/m3 density and 0.975 void fraction. The foam sample width was
selected to ensure a one dimensional smolder propagation in a

region of at least 50 mm in diameter from the sample center line,

and the length to permit the observation of self propagating
smolder without the influence of end effects. House compressed
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air is used as oxidizer. For the downward experiments the igniter
and char are placed on top of the foam sample and the air flow is

introduced at the bottom. For the upward experiments the appara-

tus is simply rotated 180 degrees. The smolder process is charac-

terized from the propagation velocity and reaction zone tempera-
tures.

RESULTS AND DISCUSSION

DOWNWARD SMOLDERING

The variation of the downward smolder propagation velocity

through the sample length is presented in Fig. 2. for several

opposed air flow velocities, The data for a given flow velocity
permits the identification of three regions within the foam

sample with different smolder characteristics. An initial zone

(I) approximately 70mm in length from the igniter where the

smolder process is strongly affected by the heat from the ignit-

er, and the smolder velocities are high. A second zone (II)

approximately 50mm long in the middle of the sample where the

smolder process is self sustained and free from end effects, and

where the smolder velocity is fairly uniform. A third zone (III)

at the end of the sample where the smolder is affected by buoy-

antly induced flows that cause an increase of the smolder veloc-
ity or a decrease depending on the initial strength of the reac-
tion. The characteristics of the smolder reaction at each zone

depend on the air flow rate. For comparison purposes, also in-

cluded in Fig. 2 is the data from a smolder experiment in natural

convection [13]. It is seen that the smolder propagation veloci-

ties are practically identical to those of case C, which implies

that free convective currents generated through the sample during

the downward smolder propagation are of the order of 0.9mm/sec.

The smoldering in the zone II is the most representative of

a forced flow opposed smoldering, at least from the point of view
of modeling, since is free from external effects. The smoldering

in the other zones, however, are also interesting because they

provide additional information about the process, and describe

situations that may occur in practice. The smolder in zone I is

representative of a situation where smoldering is supported by an

external heat source (an electrical appliance for example). The

smolder in zone III is of particular interest from the point of

view of buoyant effects on smoldering. In this zone the sample

thickness, and consequently its drag resistance, are small enough

to permit the generation of buoyant flows through the virgin foam

and remaining char. These flows may play an important role in the

smolder process in this zone because their velocities may be con-
siderably larger than those of the forced flow.

The variation of the maximum smolder reaction zone tempera-

ture along the foam sample is presented in Fig. 3 for the air

flow velocities tested. Although less well defined, the data also
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indicates the presence of the threezones described above. The

temperatures in zone I are generally higher due to the igniter

influence, and in region III lower due to convective heat losses

to the external environment. Comparison between the results of

Figs. 2 and 3 shows that there is a one to one correspondence
between the smolder reaction temperature and the smolder veloci-

ty, with the smolder velocity being higher when the smolder
temperature is higher. It is also observed that small variations
in smolder reaction temperature results in large variations on

the smolder propagation velocity.

The effect of the forced air flow velocity on the smolder

propagation velocity is presented in Fig. 4, for the three zones
indicated above. The smolder velocities are obtained from the

results of Fig. 2 and are averaged values of the smolder veloci-
ties at each zone. It is seen that the smolder velocity presents

a maximum for an air flow rate of approximately 2.5mm/sec, al-

though the exact value of the flow rate varies with the zone
under consideration. The value of the maximum velocity is also

different for the three zones, and is highest in the zone III.

The variation of the maximum smolder reaction temperature with

the air flow rate is presented in Fig. 5, for the three zones. It
is seen that the smolder temperature also presents a maximum at

approximately 2.5mm/sec, again corroborating the correspondence
between the temperature of the smolder reaction and its propaga-

tion velocity.

The above results point out to a smolder process that is

controlled by the competition between the supply of oxidizer to
the reaction zone and the loss of heat from the reaction zone.

The presence of two smolder controlling mechanisms, chemical
kinetics and heat losses, has been suggested before by Ohlemiller

et.al. [1,9,12] in a study of the effect of oxygen concentration

and pressure on the smolder of polyurethane foam. To understand
how these two controlling mechanisms affect the characteristics

of the smolder process is convenient to analyze the smolder data

in zone II first. The temperature data of Fig. 3 shows that for

low air flow velocity (B) the reaction zone temperature is low,

which indicates the presence of a weak smolder reaction due to

the low supply of oxidizer. This results in a very small smolder

propagation velocity (Fig. 2, line B). As the air flow velocity

is increased (C,D,E,F), the smolder reaction temperature and

velocity first increase, reach a maximum, and then start to
decrease. The increase in the smolder temperature and velocity is

due to the increased supply of oxidizer to the reaction zone and

the resulting enhancement of the chemical reaction. The larger

amount of heat generated by the smolder reaction compensates for

the larger convective heat losses caused by the larger air flow
rate. As the air velocity is increased, eventually the heat

generation and heat losses balance each other and the smolder _
reaction reaches a maximum in temperature and velocity (E). If
the air flow rate is increased further the heat losses overcome

the heat generation and the smolder temperature and velocity

start to decrease (F). For larger air flow rates the heat losses
dominate and cause the weakening and final extinction of the

6



smolder reaction (G,H).

The above discussed controlling mechanisms also apply to the

other two zones, although the external effects modify somewhat

the balance between then. In zone I the fuel is preheated by the

igniter and when air is made available, the smolder reaction

becomes very vigorous with high temperatures and propagation

velocities. However, as the smolder reaction moves away from the

zone of igniter influence, the cooling effect of the increased

air flow becomes dominant and the reaction temperature and veloc-
ity decrease rapidly until the reaction stabilize itself or is

extinguished. In zone III, the onset of buoyant currents affects

the characteristics of the ongoing smolder reaction by either

enhancing the reaction (cases C and D) or by weakening it (cases

B,E and F). The mechanisms by which these buoyantly generated

currents affect the smolder reaction is not totally understood

although it appears that if the reaction is strong the added

supply of air is dominant over the convective cooling. However,

if the reaction is already weak, the heat losses are dominant
weakening the reaction even further.

UPWARD SMOLDERING

The variation of the upward smoldering propagation velocity

through the foam sample length is presented in Fig. 6 for the

same opposed air flow velocities used in the downward smolder
tests. Here also three zones can be identified with different

smolder characteristics. The location of the zones and the varia-

tion of the smolder velocity in each zone are very similar to
those observed in downward smolder. Also included in Fig. 6 is

smolder velocity data for upward free convection smoldering, and
it is seen that the smolder velocities are similar to those of

case C, corroborating the previously stated observation that

buoyancy generates air flows through the this type and size of

foam of the order of 0.9 mm/sec.

The variation of the smolder velocity with the forced air
flow rate in each of the three zones are presented in Fig. 4

together with the downward data to facilitate comparison of the
results. It is seen that the effect of the forced air flow on the

upward smolder velocity is similar to that of the downward smol-

dering with the smolder velocity first increasing, and then

decreasing as the air velocity is increased. The air velocity

that produces the maximum smolder velocity is also approximately

the same as that measured for downward smoldering except in zone

III where it occurs at slightly higher velocities. The almost

identity between the downward and upward smolder velocities in

zones I and II indicates that in these experiments buoyancy does

not affect the smolder process in zones deep in the foam

interior . It does, however, have a noticeable influence in zone

III, which corroborates that the end effects observed in the



donward dataata are the result of buoyantly generated air flows.

The variation of the maximum smolder reaction temperature

along the foam sample is presented in Fig. 7 for the same air

flow velocities used in the downward tests. The temperature
distributions are also similar to those observed for downward

smoldering, although the upward smolder temperatures are general-

ly higher than those for downward smolder, particularly in zones
I and III. This is clearly seen from the data of Fig. 5 where the

variation of the smolder temperature at the three sample zones

with the air flow velocity is presented together with the data

for downward smoldering.

The above results indicate that for opposed upward smolder-

ing the competition between the supply of oxidizer to the reac-
tion zone and the heat losses from the reaction zone also deter-

mine the characteristics of the smolder process. They also show

that the smolder processes for downward and upward propagation
are identical when buoyancy is unimportatnt, as it could be

expected. When buoyancy participates in the process, as is the
case in zone III, there are differences between the smolder in

the two configurations that are worth discussing. In upward

smoldering the buoyantly generated gas heats up as it flows

upward past the elevated temperature char and preheats the virgin
fuel ahead of the smolder zone, which tends to produce larger

smolder velocities than in downward smoldering. However, these

upwardly moving gases also contain combustion products that can
reduce the supply of oxidizer to the reaction zone and cause the

weakening of the smolder reaction. Depending on which effect is

dominant, the buoyant flow can enhance or deter the progress of
the smolder reaction, as it can be observed comparing the results

of Figs. 4 and 5.

CONCLUDING REMARKS

By studying the effect of a forced flow of oxidizer on a

smoldering reaction propagating downward and upward through a

high void fraction porous fuel, the present work has helped to
identify the controlling mechanisms of opposed smoldering combus-

tion, and to determine the potential importance of buoyancy on

the process. Particularly interesting is the verification that in

this type of smoldering, the competition between oxygen supply

and heat losses determines, in conjunction with the initial state

of the reaction, the fate of the smolder reaction. Both at very

low and (relatively) large air velocities the smolder reaction is

weak due to respectivelly lack of oxidizer or excessive heat
losses.

The range of air velocities that produce a stronger smolder-
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ing reaction are surprisingly small ( of the order of 2mm/sec) in
comparison to those in other combustion processes. For this

reason buoyancy can have a very important role in the smolder

process since buoyantly generated air currents can be larger than
those that has been observed to produce the extinction of the

smolder reaction. In fact this is one of the reasons why unas-

sisted smolder is difficult to be sustained if the sample is

small. For large size samples, the buoyant flows do not pene-

trate the fuel interior as readily because of the large drag

losses, and the porous fuel itself insulates the reaction from

external convective cooling, which helps the establishment of the

smolder reaction, particularly if enough oxidizer is available at
the reaction zone.
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AB$TRACT

An experimental study is carried out of the effect on the propagation velocity of a

smolder reaction of oxidizer forced to flow in the same direction of smolder propagation.

The experiments are carried with a high void fraction polyurethane foam as fuel and air as

oxidizer, in a geometry that approximately produces a one-dimensional smolder propagation.
Measurements are performed of the smolder propagation velocity and smolder reaction
temperature as a function of the flow velocity, location in the sample and direction of
propagation (downward and upward). For both upward and downward smoldering three
zones with distinct smolder characteristics are identified along the foam sample. For forward
burning the air is forced through the igniter, therefore an initial zone near the igniter where
the smolder process is influenced by heat from the igniter, and intermediate zone where
smolder is self-sustained and free from external effects, and a third zone near the sample
end that is strongly affected by convective currents. The smolder reaction propagation
velocity and temperature have a direct correspondence and are different in each one of
these three zones. The variation with the forced air flow of the smolder propagation and
temperature shows that both parameters increase with the flow rate reaching, in the case
of upward smolder, transition to flaming at flow velocities of approximately 15 mm/sec. At
very small flow rates (smaller than 2.5 mm/sec) extinction is experienced under different
conditions. The analysis of the results confirm that the smolder process is controlled by the

competition between the supply of oxidizer to the reaction zone and the loss of heat from
the reaction zone. Forward smoldering shows a clear effect of gravity for flows smaller than

approximately 3.0 mm/sec, at low flow rates oxygen depletion is the dominant factor
controlling the smolder process, air is forced through the igniter therefor convective heat
losses to the air flow are less significant letting us observe the effect of gravity in the
transport of oxidizer. For opposed flow previously reported experiments showed that

increasing the flow velocity strengthens the smolder reaction resulting in larger velocities
and temperatures, but for flows over 2.5 mm/sec convective cooling to the air becomes

dominant leading to extinction. For this configuration the air flow carries the reaction heat
to the virgin fuel resulting in temperatures and velocities increasing monotonically with the

flow rate, giving a more clear image of the effect of gravity and the competition between

oxidizer transport and heat losses. The convective currents acting at the end of the sample
show a different view of this competition, which is transition to flaming; smolder would not
transition to flaming in downward burning where convective currents will significantiy

oppose the forced flow, instead transition to flaming will occur in upward burning where
convective currents act in the same direction of the forced flow. Comparison between

downward and upward smoldering corroborates the above observations.



INTRODUCTION

Smoldering is defined as a non-fiaming, surface combustion reaction propagating

through a porous fuel [1]. Although present in a variety of combustion processes, it is of

particular interest in the fire safety field because of its role as a potential fire initiation

source. Smoldering combustion is a weakly reacting phenomenon which once established is

difficult to detect and extinguish because it propagates through the interior of the fuel.

Circumstances that WIU suppress flaming often favor smolder and it is even possible for a

smoldering combustion process to propagate and persist in the absence of any convection.

therefore it represents a serious fire hazard. Smolder involves a complex process related

to fluid mechanics and heat transfer in a porous media, together with surface chemical

reactions. Chemically the porous combustible material can sustain complex surface reactions

and produce heat and combustion products. The interaction between the physical and the"

chemical processes determines the final characteristics of the smolder reaction.

Most of the work that has been done to date on smoldering combustion has

concentrated in analyzing the effect of oxidant composition, velocity and pressure on the

smolder reaction [2-9]. The present work is part of an ongoing study that has as objective

understanding the effect of buoyancy on the smolder process. It extends the works of

references [10,11] which used powder cellulose as combustible porous material and of

references [13,14] which used the same polyurethane foam; all of these studied the effect

of buoyancy on the smolder process by changing the environmental conditions. Here



Polyurethane foam is used as fuel, and the effect of buoyancy is determine by comparing the

smolder parameters in downward and upward propagation. The interest of using this

material is two fold; it is a commonly used material, and its structure permits upward

burning experiments without collapsing problems as it occurs with cellulose and other loose

materials.

The experiments are conducted in the forward flow configuration, for both downward

and upward smolder propagation. In this type of smolder the reaction zone and the forced

oxidizer flow move in the same direction. This type of smoldering is also referred to as

counter-current smoldering because if the reaction front is considered as stationary the fuel

and oxidizer reach the reaction zone in opposite directions. In the downward smoldering

experiments the foam is ignited at the top and smolder propagates downward, and in

upward smolder/ng the foam is ignited at the bottom and the smolder propagates upward.

In downward smoldering the gravitational acceleration is in the same direction as that of

smolder propagation, and for upward smoldering in opposite direction. Therefore when the

upward and downward experiments are compared, the difference between the two can be

attributed to gravity.



EXPERIMENT

A schematic diagram of the experimental installation is shown in Fig. 1. The porous

fuel is contained in a 300 mm long vertical duct with a 150 mm side square cross section.

The duct walls are made of insulating 10 mm thick Fiberfax sheet mounted on an aluminum

frame. The oxidizer gas flows to the test section through a diffuser fitted at one end of the

duct, after being metered with a Tyland mass controller. The fuel ignition is accomplished

with an electrically heated igniter placed in close contact with the foam. The igniter consists

of a Nichrome wire placed in between two, 5 mm thick, porous ceramic honeycomb plates

that provide rigidity to the igniter and heating uniformity. To insulate the ignition zone and

simulate an ongoing smolder process, a layer of char from an already smoldered foam is

placed at the other side of the igniter. For the forward smoldering experiments the section

containing the igniter and the chat is placed at the diffuser exit upstream from the section

containing the virgin foam.

The foam ignition is accomplished by bringing the temperature of the igniter up to

approximately 500 °C. For these specific experiments the power needed was of

approximately 10 J/ram z during a period of 15 minutes. Most of the energy is used, however,

to heat up the igniter ceramic plates to the temperature mentioned above. Since the air

flows through the igniter before reaching the fuel, the air flow is turned off, during the

heating period, to avoid extending the igniter influence to a larger fraction of the virgin

material, and to standardize the ignition process that if performed with the air flow on, will



depend on the flow rate. The heating period is selected to ensure the self supported

propagation of the smolder reaction. Once the ignition heating period is completed, the

igniter current is turned off and the flow of air is turned on. initiating the flow assisted

smolder process.

The rate of smolder propagation is obtained from the temperature histories of eight

Chromel-Alumel thermocouples 0.8 mm in diameter that are embedded at predetermined

positions in the porous fuel with their junction placed in the fuel centerline. The smolder

velocity is calculated from the time lapse of the reaction zone arrival to two consecutive

thermocouples, and the known distance between the thermocouples. Although the arrival

of the reaction zone is characterized by a maximum in the temperature profile, under most

experimental conditions this maximum is not sharply defined, and the location of the

smolder zone is defined by the intersection of the tangent to the temperature curve at the

inflexion point and a horizontal line at a temperature near to the maximum (350 °C in this

work).

All the experiments are conducted with 150 mm side cubes of an open cell

unretarded, white polyurethane foam, with a 26.5 Kg/m 3 density and 0.975 void fraction. The

foam sample width was selected to reduce the effect of the cold walls on the smoldering

reaction thus helping to obtain one dimensional smolder propagation in a reg/on of at least

50 mm in diameter from the sample centerline. The length is enough to permit the

observation of self propagating smolder without the influence of the igniter and end effects.

House compressed air is used as oxidizer. For the downward experiments the igniter and



char are placed on top of the foam sample and the air flow is introduced through the

igniter. For the upward experiments the apparatus is simply rotated 180 degrees. The

characteristics of the smolder process are determined from the propagation velocity and the

reaction zone temperatures.

RESULTS AND DISCUSSION

The analysis of the data is clone by dividing the foam sample in three different zones

(Fig.2). An initial zone (I) of length dependant on the flow rate, but that is never more than

50 mm away from the igniter, where the smolder process is affected by the heat from the

igniter. A second zone (If) covering approximately the central 60 mm of the sample, where

the smolder process is self sustained and relatively free from end effects. A third zone (RI)

at the end of the sample where the smolder is affected by the ambient air and by the small

size of the virgin fuel left for smoldering. The extent and characteristics of the smolder

reaction at each zone depend on the air flow rate. Since during the period of ignition there

is no forced air flow through the foam this region is not representative of the type of

smoldering studied here, therefore the data from the first 35 nun of the sample is not

presented. Also since the velocities are obtained from the temperature histories of two

thermocouples and assigned to the midpoint between the two, the corresponding figures

(Fig.2 and Fig.7) do not show data points for the first 50 ram.

The smoldering in zone II is the most representative of a forced flow, forward



smoldering, at least from the point of view of modeling, since external effects are limited.

The smolder/ng in the other zones, however, are also interesting because they provide

additional information about the process, and describe situations that may occur in practice.

The smoldering in zone I is representative of a situation where smoldering is supported by

an external heat source. As it will explain later, the smolder in zone Ill is of particular

interest from the point of view of buoyant effects on smoldering. In this zone the length of

the virgin fuel, and consequently its drag resistance, are small enough to permit the

generation of buoyant flows through the virgin foam and remaining char. These buoyant

flows may play an important role in the smolder process in this zone because their velocities

may be similar or even larger than those of the forced flow.

In smoldering the heat transfer from the smoldering reaction to the adjacent

material, and the oxygen supply to the reaction zone are the two main mechan/sms that

control the smolder reaction characteristics [1,9,12,13,14]. In the forward flow configuration
{...

heat is being carried away from the reaction zone towards the virgin foam by the flow after

passing through the char. As a consequence the heat transferred to the virgin fuel is

enhanced as the flow rate is increased, which favors the propagation of the smolder reaction.

The oxidizer transport effect of the forced flow is two fold; increasing the flow rate increases

the oxygen supply to the reaction zone, on the other hand the products of combustion are

carried into the virgin foam mixing with the oxidizer inside the pores and diluting the oxygen

concentration. Furthermore, the oxidizer is reaching the reaction zone through the char

which while preheating the air may also cause its depletion due to secondary reactions.

Another process that takes place under certain flow conditions is the onset of secondary



reactions in the char, the fresh oxidizer moving through the char will encounter hot char

generating secondary smolder reactions behind the smoldering front that will propagate in

an opposed manner. This will result in the depletion of the oxidizer reaching the smolder

wave from the char, this effect significantly decreases the smoldering reaction strength. The

final characteristics of the smolder reaction fn a given case depend on the relative

importance of each one of these effects.

DOWNWARD SMOLDERING

The variationof the downward smolder propagationvelocityand of the maximum

smolder reactiontemperature through the sample lengthare presented in Figs.2 and 3

respectively,forseveralopposed airflowvelocities.The resultsoffigures2 and 3 arebetter

analyzed if the processesinvolved in each zone are treated separately.Although the

boundariesbetween the differentzones carmot be dearlydetermined,the followingtrends

are identifiedfrom the measurements. Since the smoldering in zone II is the most

representativeof a forcedflowwe willbeginby describingthiszone. With no flow (A) the

smolder velocitiesfor thiszone remains almostconstantdecayinginthe last30 mm of the

sample.When the airflow isincreasedto 0.3mm/sec (B) extinctionisobserved very early

in the sample,a furtherincreasein the flowvelocity(C) shows again a slowlypropagating

reactionthat reaches extinctionin the last30 turn of the sample. And for higher flow

velocitiesthe smolder velocityincreasemonotonicallywith the flow velocity.Smolder



velocities are not constant for flow velocities greater than 1.7 mm/sec (D) instead it is

observed that the smolder velocities increase towards the end of the sample. The smolder

reaction temperatures follow a different trend. For no flow temperature remains almost

constant and below 350°C along all zone If, which is indicative of a very weak smolder

react/on (13,14). For case (B) it can be observed that the temperature drops down along the

fuel sample until the react/on finally extinguishes. As the flow velocity is increased above

values of 0.9 mm/sec (C) the maximum reaction temperatures keep increasing as the air

flow velocity is increased. The temperatures for a given flow rate shows that the reaction

temperatures decay through zone II.

These results are explained by the interaction of the above indicated heat and mass

transfer mechanisms. For the case with no forced flow the smoldering reaction propagates

into the virgin foam which contains oxidizer in its pores. This is mainly a self sustained

process where the biggest contr/bution of oxidizer to the reaction comes from the air in the

foam pores. When air velocities of the same order of magnitude as the smoldering velocities

are forced through the sample (B), the air flow pushes the products of the reaction along

with the smoldering front, which causes a significant dilution of the oxidizer and results in

the observed extinction. As the air velocity is increased above the smoldering velocity, the

forced flow carries the products away from the reaction and brings to the reaction zone

more oxidizer, which results in an increase in the smolder velocity as the flow is increased.

The smolder velocity data for a specific flow velocity show that the smolder

propagates faster as the smoldering reaction progresses through the sample. The rate of



propagation increasesas the air flow is increased.This is the result of the forced flow

carrying the hot products from the smoldering reaction into the v/rgin fuel, which preheat

the foam and consequently increase the smolder velocity. The further away from ign/tion the

longer the preheating period and therefore the higher the temperature of the fuel

encountered by the smoldering front.

The temperature data of Fig.3 shows that for most flow rates the smolder reaction

temperatures decrease as the reaction moves through the sample. The decrease in

temperature is brought by the continuous, although weak, reaction of the char together with

the onset of stronger secondary reactions mentioned above. This reactions consume part of

the oxygen from the air flowing through the char and as a consequence the air reaching the

primary smolder reaction zone has a smaller oxygen concentration which results in weaker,

lower temperature, smaller reactions. Secondary reactions are very weak at low flow

velocities and may extinguish due to convective heat losses. The strength of these secondary

reactions is enhanced as the forced flow is increased due to the increased availability of

oxidizer. It is interesting to note that although the temperature decreases the smolder

velocity increases, which indicates that for most flow rates the preheating effect is dominant

over the decrease in oxidizer. However, as the air flow is increased and the strength and

duration of this secondary reactions increase, they consume more oxidizer until the

preheating effect is canceled and the smolder velocity starts to decrease as occurs in case

(1). The maximum reaction temperatures of these secondary reactions are much higher than

the typical smoldering temperatures, usually above 500°C.



The samemechanismsdescr/bedfor zone H basically apply for zone L In zone I the

heat from the igniter represents an extra source of heat and introduces a transient period

where the process transitions from the no flow ignition heating regime to the forced flow

described above. This tr_itlon period becomes less im_t as the air flow is increased

but the increase in oxidizer supply results in secondary reactions that will be present in the

char near the reaction zone and near the igniter, resulting in the dilution of the oxidizer

reaching the smolder reaction. For small flow rates the products accumulated during the

ignition period are pushed into the smolder reaction zone resulting in a decrease in both

temperatures and smoldering velocities, this effect decreases with the increase in air flow,

but as it becomes less signifier the secondary reactions appear depleting the oxygen

concentration reaching the reaction zone. Only for the largest air flow (I) it is observed that

the heat carried from the hot secondary reaction has an effect on the smoldering reaction

in zone I, increasing both reaction temperature and velocity.

In zone III the amount of virgin foam is small enough that buoyant recirculation can

be generated. These recirculation flows bring additional air to the reaction zone which

results in the trends observed in Figs. 2 and 3 for zone IT to be magnified. From Fig.2 it can

be seen that for all flow rates the smolder velocities increase strongly as the smolder fi'ont

reaches the end of the sample. The data of Fig.3 shows also an apparent increase in the

maximum reaction temperature in the last centimeter of the sample indicating the presence

of added oxidizer from the ambient air. For smolder velocities higher that 0.5 [mm/sec] and

in the last 50 mm of fuel the combined flow rate of the forced flow and buoyantly induced

recirculating flows (due to the decrease in drag) is big enough so as to make the products



concentration in the total flow very small leading to an enhancement/n the reaction, at this

point we start observing weak secondary reactions moving upward in an opposed flow

configuration. A continuous secondary reaction can be observed in the char for flow rates

between 2.8 and 7.8 [mm/sec].This secondary reaction is weak and can not propagate

opposed to the forced flow due to heat losses to the incoming flow. The secondary reaction

will use up some of the oxygen that used to reach the smoldering reaction, resulting in a

further decrease in the reaction temperature. The process at this stage becomes extremely

complicated, we have virgin foam heavily preheated, more and more significant buoyant

flows coming from the bottom and opposing the forced flow that result on an overall

increase in the smolder velocity, for flows smaller than 10 [mm/sec] (Fig.2 and 4) and an

overall decrease in the reaction temperatures ( Fig. 3 and 6). As we increase the flow rate

the secondary reactions increase in strength and start to propagate upwards, becoming, for

flows greater that 14 [mm/sec], the dominant reaction using large fractions of the incoming

oxidizer. Smoldering velocities decrease and stabilize around 0.9 [mm/sec] and reaction

temperatures are kept high by the heat generated from the secondary reaction which is

basically a much stronger process.

The effect of the forced air flow velocity on the smolder propagation velocity is

presented in Fig.4, for the three zones indicated above. An expansion of the data at low air

velocities is presented in FigS. The smolder velocities are obtained from the results in Fig.2

and are averaged values of the smolder velocities at each zone. From Fig.5 it is seen that

in zones I and II the smolder velocity has a mimmum at a flow velocity of approximately

4 [mrn/sec], and increases monotonically with the flow velocity for larger flow rates. Zone



III showsa minimum at 4 [mm/sec] and a maximum at approximately 7 [mm/sec] (Fig.4).

For downward smoldering, buoyant flows generated by the density stratification move

upwardwhile the forced flow movesdownward,therefore theywill distort the flow when the

forced velocity is smaller or equal to the buoyantone which results in smaller smolder rates

due to the accumulation of the products in the reaction zone. For greater air velocities, the

forced flow becomes the dominant transport mechanism and the smolder velocity increases

with the flow rate due to the increase in oxygen supply to the reaction. This is confirmed

by the results from previous experiments in the opposed configuration [14] where it was

determined that buoyant flows were of the order of 1 [ram/s], which corresponds

approximately to the values observed in Fig. 5. The reaction in zone I is particularly weak

at low flow velocities because the reaction products generated during the ignition period

remain stagnant around the reaction zone diluting the oxidizer in the fuel pores. In some

cases the competition between the oxidizer supply to the reaction zone and the convective

heat losses from the reaction zone yields in favor of the heat loses and results in the

extinction of the reaction (case B). The fact that this extinction is buoyantly originated is

further verified by the results from zone III and for upward propagation described below.

UPWARD SMOLDERING

The variation of the upward smoldering propagation velocity along the foam sample

length is presented in Fig.7 for the same forward airflow velocities used in the downward

smoldering tests. Here also the three zones indicated above are used to describe the data.



Zone II has almost constant velocities for small flow rates and the velocities in zone IIl

increase as the smoldering front reaches the end of the sample. In Fig.8 it can be observed

that for small flow velocities temperatures are constant through zones I and H and that as

the flow velocities is increased temperatures are highest in zone [ and decay through zones

II and III for flow rates larger than approximately 6 [mm/sec].

The basic mechanisms that explained the results for downward burning also apply for

upward burning, and the differences can be attributed to gravity. In upward burning both

the buoyant and forced flow move in the same direction in the central core of the fuel, and

therefore the combustion products are always driven ahead of the reaction. As a result the

smolder velocities for all flow velocities increase monotonically with the flow rate and

extinction is not observed even at the lowest flow velocities. Another important aspect that

results from buoyancy acting in the same direction as that of the forced flow is the decrease

in mixing between products and oxidizer. In downward burning since buoyant flows and

forced flows move in opposite directions, recirculation current are enhanced and therefore

mixing between products and oxidizer is also enhanced, for upward burning both flows act

in the same direction therefore the products travel through the fuel, and mixing is less

significant.

For upward smolder we also observe secondary rea.ctions of similar characteristics

to the one observed for downward smolder. These reactions produce the same effect on the

smolder wave as before. In this case, however, these secondary reactions bringup a very

important aspect to the smolder process, transition to flaming. In upward smolder the



products leave the smolder reaction zone through the virgin fuel, therefore the char that will

act as fuel for the secondary reaction receives fresh and unobstructed oxidizer flow. Since

the limiting parameter for a smolder reaction to transition to flaming is the oxidizer

concentration, if the reaction is strong enough upward burning will have a greater tendency

to flaming. The experiments confirmed this hypothesis, and the secondary reaction transition

to flaming for 14 [mm/sec] flow rate.

The variation of the upward smolder velocity with the forced air flow rate is

presented in Fig.4 and 5. From these figures it can be observed that the significance of

buoyancy in zone I extends to flows approximately 14 [mm/sec]. Buoyancy increases the

transport of hot gases from the reaction region to the virgin foam nearby. This is particularly

significant in zone I where a slight increase in oxygen supply will result, due to the

preheating effect, in a significant increase in the propagation velocity, as observed for flow

rates over approximately 6 [mm/sec]. During the ignition period in upward burning the

products will move towards the virgin fuel, instead in downward burning they will move

towards the char, therefore the concentration of smolder and temperature of the virgin

foam, at the time when the forced flow is initiated, are higher in the upward burning

configuration. These results can be observed in Fig. 4, 5 and 6 where we see that for upward

burning, velocities increase monotonically with flow rate and the initial region of extinction

present in downward smolder does not appear. In zone H the reaction is free from the

igniter effect and the effect of buoyancy is reduced to flows below 2.8 [mm/sec]. The

smolder velocities for zone II have values smaller to the ones of zone I (up) and higher to

those of zone I (down) showing how the influence of the igniter magnifies the buoyant



effect.

In zone III the influence of buoyancy is very significant, forced flow and buoyantly

generated flows appear to be of the same magnitude, for small flow rates after the period

where extinction is observed in downward smolder, propagation is much faster in the

downward configuration even though reaction temperatures are always much lower. In

downward burning buoyancy opposes the forced flow generating recirculating currents that

seem to enhance both mixing of products and oxidizer as well as localizing the heat transfer

from the reaction zone to the virgin fuel, instead in upward burning mixing is less intense

and the heat is carried to a much larger region of the fuel. More mixing results in a more

diluted oxidizer and therefore in lower temperatures for downward smoldering and more

localized heat transport in a smaller smolder velocity for upward burning. As we increase

the flow rate this complicated scenario brings a transition range of flows between 4 and 8

[mm/sec] where is not clear which effect is dominant and resulting in a clear higher

temperature for upward smolder and smolder velocities which tend to match for flow rates

over 5 [mm/sec].

CONCLUDING REMARKS

By studying the effect of a forced flow of oxidizer on smoldering reaction propagating

downward and upward through a high void fraction porous fuel, the present work has helped

to identify the controlling mechanisms of forward smoldering combustion, and to determine

the potential importance of buoyancy on the process. Particularly interesting is the



verification that in this type of smoldering, the competition between oxygen supply and heat

transport determines, in conjunction with the initial state of the reaction, the fate of the

smolder reaction. Heat transpon mechanisms are always favorable in this type of

smoldering, but even under this favorable conditions lack of oxidizer can lead to weak

reactions and even to extinction.

The favorable heat transfer conditions enable us to observe the process of transition

to flaming, which occur for flows over 14 [mm/sec]. Buoyancy plays an important role in this

process, the main limiting factor in transition to flaming is the lack of oxidizer, the large

drag losesinduced by the foam do not enable enough oxidizerto reach the reactionzone

so onlywhen the smolder reactionpropagatesin the char thatismore porous flaming can

occur.Even then the oxidizercontenthas to be high and the enhanced mixing between

oxidizerand productsin downward smolder inhibitsflaming.This work isvery important

because itshows the requirementsthatany futuretransitionto flamingexperiment in this

kind of materialhas to have.
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Abstract

A study is being conducted on the effects of
buoyancy in smoldering combustion, and the
expected behavior of smolder under low gravity
conditions. Initial experiments, onone-
dimensional smoldering of polyurethane foam have
been conducted,bothinground-basedanddrop
tower facilities, to provide information for the
design of space-based experiments. Results from
these experiments are presented and discussed in
light of our understanding of the various competing
physical processes controllingsmoldering
combustion.These resultsshowthatforlow

forcing flow rates, smolder behaves differently in
the absence of gravity than at normalgravity,

I.Introduction

Smolderis definedasa non-flaming,
exothermicsurface combustion reactionI.
Smolderingcommonlyoccursin porous and
permeablecombustiblematerials, and is
distinguishedfromothercombustionreactionsby
itslow temperatures,lack of flame and slow
propagationvelocities. Afar smolder hasbeen
initiated, it propagatesthrough the fuel by
transferring heat, releas_during heterogeneous
oxidation of the fuel, toward the virgin material.
Heat is uunsferred by conduction, convection and
radiation. Heat losses may be due to heating up the
virgin fuel as well as conduction and convection to
the ambient environment. Additionally, oxidizer,
transported to the reaction zone by diffusionand
convection, must be present in sufficient quantity
to allow the reaction to proceed.

Smolder has been the subject of much interest
and study because it is acknowledged as a

significant fire safety hazard1- It can play a role in
the initiation of unwanted [rites,which may be
triggered by a sudden transition from smolder to
flaming. Smolder may progress for long periods of
time undetected (because of its low intensity) until
a sudden Wansition to flaming occurs. 1,4,8

The terminology of smoldering for one-
dimensional configurations is shown in Figure 1.
Cocurrent smolder applies to the situation where,
when viewed in a frameof reference attached to the
smolder wave, both the fuel and the oxidizer enter
the reaction zone from the same direction.
Countercurrent smolder is therefore the situation
where fuel and oxidizer enter the reaction zone from
opposite directions. The interaction of the physical
processes which control smoldering is quite
complex, and models developed so far have been
fimited. An excellent review of smolder
combustion modeling is that of Ohlemiller 1. A
limited number of experimental and theoretical

Copyright © 1990 by the American Institute of Aeronautics
and Astronautics. Inc. No copyright is a_ened in the

United States under Title 17, U.S. Code. The U.S. Govern-
ment has a royalty-free license to exercise all rights under
•he cot_vri_oht claimed herein for Governmental purposes

studies on the effect of buoyancy on steady smolder
have been published 3. With the exception of the
works of Ohlemilier and Sato I1,12. relatively little
work has been done int he areas of ignition data and
analysis and transition to flaming modeling.

Since smolder is possible at air/fuel ratios only
a few percent of stoichiometri¢ 10, heat release and
smolder velocities may he, relatively, quite low.
Convective flow of gases, either free or forced, may
therefore have a significant effect on smolder. In an
effort motivated primarily by the need to understand
the possible behavior of smoldering combustion in
a space-based environment where natural convection
will notbepresent, we have been studying the role
of buoyancy in smolder initiation and propagation
through porous combustible materials.

We have conducted a short program of
microgravity experiments on smoldering
combustion, using a drop tower, to obtain
preliminary information on smolder behavior in
this environment. These results are primarily
qualitative, as the slow process of smolder allows
only limited data to be obuzmed in the 2.2 seconds
available in the drop tower. In this paper we will
report on experimental resultsfrom both normal
and low gravity studies. All configurations involve
one-dimensionalcocurrentsmolder, either upward
burning or downward burning. Results show that
buoyancy does influencesmolder propagation, as
would be expected from a process so sensitive to
convective mass and energy transfer, and we can

begin to identify regions of parameter space where
the role of buoyancy is most significant. Results
also provide qualitative information for the role
buoyancy plays insmoldering.
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All tests, at both normal and micro-gravity,
were conducted on cubic samples of polyurethane
foam, four inches on a side. Figure 2 shows a
schematicofthegeneraltestapparatus.The sides
ofthetestapparatusholdingthefoamwerewell
insulated.Forfreeflowconditions,topandbottom
wereleftopen.Forforcedflowconditions,oneend
was fittedtoanairduct.Compressedstandardair
was used,andflowwas controlledby eithera
Matheson603/604rotameter(groundtests)ora

precisionmeteringvalve(droptowertests).
Polyurethanefoamwas chosenasourfuel

becauseitmaintainsitsshapeasitsmolders(a
critical issue for conducting both upward and
downward burning tests at normal gravity) and it is
a realistic teat fuel for spacecraft t-wehazards.
Smoldering combustion of polyurethane foam has
been studied extensively 4.5,6'7'$. Smolder was
initiated from the top (downward burning) of from
the bottom (upward burning). Repeatable smolder
initiation in polyurethane samples of this size and
geometry proved to be a deficate task. After much
trial and error, the procedure evolved to the
following: A nichrome wire coil, through which a
10V current was passed, was placed against 3 layers
of cotton linen (1 1/2" square) centered in the open
end of the sample. The wire, which heated to 450 °
C, was left on for 40 seconds to ensure that the top
cloth layer had begun to smolder. Smolder
proceeded through the three layers of cloth and into
the foam sample below.

Temperature data were taken with K-type
tlw.n_ocouples placed at fixed distances along the
centerline of the samples. The temperature
histories of the thermocouples was used to
determine both peak temperature and smolder
velocity as a function of air flow rate. Smolder
velocity was determined by taking the ratio of the
distance between two thermocouplesand the delay
time of arrival of the smolder front between these
thermocouples. Both so_ of information were
used to analyze the characteaistics of the smolder
propagationthroughthesamples,and their
variationwiththeenvironment.

3. Results

3.1 Downward Cocurrent Smolder at Normal

Gravity

These tests were conducted on samples, as
described above, in a chemical fume hood. In these
tests, samples were ignited at the top and smoldered
downward. When a forcing flow was applied, it
was ducted upward through the samples fi'omthe
bottom (see Figure 2). Peak temperatures measured
by the topmost and bottommost thermocouples arc
plotted vs. a range of forced flowrates in Figure 3.
Smolder velocities obtained with data from the
topmost thermocouple pair and the bouommost
thermocouple pair are plotted vs. forced flowrates in
Figure 4. The topmost thetmocouple is expected
to be highly influenced by the ignition region,
while the bottommost thermocouple represents a
region independent ofthe

n_tsdng
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ignition source. Note that Figure 4 reflects a
nearly constant smolder velocity derived from the
topmost thetmocouple pair. This is another
indication of the steadying effect of the ignition
region.

In comparing Figures 3 and 4, it can be seen
that there is a correspondance between peak
temperature and smolder propagation velocity. In
both figures, the uppermost temperature or velocity
shows a region which, although affected by
flowrate (higher flowrate$ produce cooler ignition
regions), is clearly most strongly dependent on the
fact that itisnearthe ignition zone. The
boaommost thermocouple shows a strong drop at
12 soc/se¢ flowrate, tree also for smolder velocity
away from the influence of the ignition zone. This
is at least partially the result of forced flow
cooling. In addition, there is the possibility that
this is where entrainment due to buoyancy is
overcome by the forcing flow.
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3.2 Upward Cocurrent Smoldering at Normal
Gravity

In this case, samples were ignited at the
bottom, smoldering upward, with forced air flowing
downward through the samples for those cases
where forcing flow was applied. For this
configuration, the effect of buoyancy is mole
complex. Figure 5 shows peak temperatures
measuredby thetopmost andbottommost
then_ocouplesplotted against a range of flowrates.
As can be seen in this figure, peak temperature
drops drasticallywhen flowrate is inoeasod
slightly, then climbs again in the range 25-40
scc/sec, then falls off at higher flow velocities. In
these tests, buoyancy acts in a direction opposite to
that of the forcing flow, moving combustion
products upwardinto the porous foam. Since_is
is the case, we expect to see a rrgion in flowra_
space where the two flow effects counteract one
another, and recirculatlon effects may be generated
within the fuel bed. From Figure 5, we can see
that at higher flow rates, forcing flow overcomes
any effect due to buoyantflow, as was true in the
downward burning case (see Figure 3). For the
rangeof flowrates below that, we can now seethe
effectsof buoyancycompetingwith forcing flow
(rather than combining,as in downward burning).

3,3 Low Gravity Tests

Two series oftestswere conducted under

low gravity conditions - an ignition series and a
steady smolder series. As mentioned previously,
becau_ of the short duration of each test, changes
in smolder characteristics when g level was
alxuptly changed f_m one to almost zero were
noted. All these tests were conducted in the 2.2

Second Zero-Gravity Facility at NASA's Lewis
Research Center in Cleveland, Ohio. A schematic
of this facility if shown in Figure 6. In this
facility, 2.2 seconds of acceleration levels ofahout
10-5 g are ach/eved by a/lowing an experimental
package to five-fall in the 89 ft. tower. The
package is enclosed within a free-falling drag shield,
designed with a low drag coefficient. Sincethe
package and the dragshield fall freely and
independently ofeachother, the package
experiences dragdue only to it's small velocity
relative to the shield. At the end of a drop lest,
spikes on the bottom of the drag shield penewate a
7-fL deep bed of sand at the base ofthetower,
bringing the package to rest. Maximum
decelerations are about 30 g.

Figure4
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Figure 7 shows a schematic of the drop
package, whose overall measurements were 36 by
16 by 30 inches. All data acquisition, power and
timing equipment were mounted on the drop
package itself. Either two or five K-type
thermocouples, ungrounded junction of diameter
.001% were used for these tests. For the ignition
tests, two thermocouplcs were use, one just under
the foam surface and another 1/4" below that. For
the steady smolder tests, five thermocouples were
used, placed at 1/2" intervals through the foam.
Note that the purpose here was not to measure
smolder velocities. We initiated a drop after steady
smolder was established, and then looked at changes
registered by any of the five thermoc_)uples as
single entities. Temperature data were take,a and
stored with a small owboard data acquisition and
control compu_. The efm for each thermocouple
was recorded 20 times per second, andat file end of

each drop the data were wansf_ maPC for

reduction and analysis. The smolder apparatus was
mounted at the center of a 10 in. diameter, and 2
foot tall combustion chamber. Air flow, from a
regulated pressure cylinder on the rig, was
controlled by a precision metering valve. The
metering valve was calibrated on the ground, and
the calibration was checked at the end of each days
drops. Air entered the combustion chamber
through ports mounted on its floor, and was ducted
intotheapparatus and throughthefoam,
Volumeu'icflowroteswe,reverysmall,and didnot

affectthepressureinthecombustionchamberover
thelengthsoftimethatthesetestswereconducted.

SampleswereignitedinIgand thendropped.
For the tests designed to lookat ignition, the drop
occurred after a ninety second wait, which was
determinedfromground tests to be enough time for
thefoamtojustbegintosmolder.Testsconducted
toseeifinformationcouldbegainedfromlooking
attheIg to0 g Wansitioninsteadysmolderhada
5-7 minute wait after ignition. This was necessary
to allow the smolder front to move into the body of
the foam sample. The drop in these tests occurred
when the smolder frontjust reached a particular
(hermocouple.

3.3.1 Low Gravity Ignition Tests

14 tests were conducted, using five different
forcing flow rates over the range of 0-20 scc/sec.
For these tests, the samples were ignited in I g and
then dropped while still in the ignition phase (i.e.,
serf-sustaining smold_ was achieved in the cot_n
cloth but not in the foam itself). What is derived
from these tests is information on how temperature

4
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changesin the immedia_ vicinity of ignition u we
go from I g to 0 g. Figure $ showsa
representativegraphof Tr_nperaturcvs. time resul_
for a singleoneof Ihcscdrops. Graphical
representationof the overall resultsin shownin
Figure 9. Figure 9 shows the averagechangein
slopeof the recordedtemperature(_Jscc) from
before drop initiation through the duration of the
drop. This figure clearlyshowsthatthereisa
significant change at lower flowra_, and that this
change becomes negligible as the flowra_ increases
(somewhere after gscc/sec). This indicates that
forced flow conditions are dominant at larger
flowrates, in qualitative agreement with the normal
gravitydata.
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3.3_. Low Gravity S_.afy Smolder Tests

14 tests were conductedover three flowrates.
These tests had the same apparatus as the ignition
series, but with more thermocouples, as was
explained earlier, h these cases, The drop package
sat at the top of the tower for 5-7 minutesbetween
ignition and dropping, to a11owsteadysmolder to
become established in the samples. The drop was
initiated when the smolder wave reached one of the
thermocouplcs. This was accomplished by having
the on-board computer send a signal when thc
temperaturerecorded by the third thermocouple
reached levels expected in the smolder fixmt.
results are far moredifficult to interpret than the
ignition casesbecause there is not the uniformity
seen in the ignition series. Them were three types
of results from these tests. They will be descnl_ed
here and discussed qualitatively in the next section.
In three cases, oscillations in temperature can be
observed at the reaction zone after the package
drops. These are not artifacts of the data acquisition
system. There are also four definite, clear cases,for
low flow rates, where the temperature at both the
reaction zone thermocouple and the topmost

therrnocouple goes up after the drop. This parallels
the results of the ignition series tests. The rest of
the drops show little or nochangesat any of the
thcrmocouples, This may well have resultedfrom
errors in drop signal timing or delays in the drop
sequ_r,e causing the drop to occur with the reaction
front not located right at a thermocouple.

4. Discussion and Conclusions

In comparing the two configurations of normal
gravity studies, it should be noted that, while both
are cccurrcnt,in one case ( downward burning) the
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forcing flow acts in the same direction as flow due
to buoyancy, and in the other case ( upward
burning) they act in opposite directions. For the
downward burning case, at low forcing flow
velocities, there will be a buoyant plume above the
hot smoldering region that will carry away hot
products and enwain fresh cooler air, bringing it
into the smolder region. For larger values of
forcing flow, flow effects due to buoyancy will be
ovetpowerexl. It is expected that, for forced
flowrates above a threshold value, buoyancy will
not play a role. For the upward burning case as
well, we expect to see buoyancy playing a role at
lower flowrates, and being overcome by forcing
flow effects after some threshold. Figures 3, 4 and
5 all indicate that there appears to be a region where
buoyancy does play a clear role in smoldering
propagation. That region is 5-15 see/see for the
geometry and fuel we are studying.

The smolder process itself is very slow, and
occurs (in steady state) in a time frame far longer
than two seconds (approximately 20 minutes for
complete burning in the sample size we had). Our
objective in using the Drop Tower has been to
obtain trends and to examine the changes which
occur in a smoldering sample during the wansifion
from normal to low gravity. While somewhat
limited data have been obtained, this preliminary
level of information is critical for the design of
future, longer time scale experiments in low
gravity, particularly for the development of smolder
initiation techniques in low gravity. =.....

As was seen from the normal gravity tests in this
program, buoyancy driven convective heat and mass
transfer do play a role in smoldering combustion.
In the ignition phase, buoyancy affects both the
heat transfer from the ignition source and the mass
flux of oxygen to the smolder initiation zone. An
understanding of the differences we can expect in

initial temperature and location of combustion
_oducts for l g and 0 g cases is necessary in order
to design an ignition system for space-based
experiments.

As can be seen from Figure 9, low gravity vs.
one gravity trends cease to show differences for
higher forced flowrates, but do reflect changed for
the lower flowrates, the region where differences
occur encompasses the same range as was observed
in the normal gravity downward burning tests (see
Fig_ 4). Th--e._e-iests-hadicate-that ihere is a
definite region where smoldering combustion will
behave differently in the absence of gravity than it
does at one g, andthat this difference may affect the
whole process of ignition to smolder. What is
interesting to note is that, over the time scale of
these tests (2.2 see.) the system responds more to
the influence of heat loss changes than it does to
any changes in the oxygen flux. This clearly
affected the results of the low gravity steady
smolder series of tests, where at least part of the
problem was that the characteristic time for steady
smolder inside a porous body to be affected by
changes in buoyant currents is much longer than
for smolder initiation. It is also true, however, that
the steadying effects that we saw in the normal
gravity tests from the ignition zone will not
necessarily be present at the location of most of the
thermocouples in these tests.

From our ground tests, where we studied one-
dimensional cocurrent smolder, we have identified a
range of low flowrates where buoyancy affects
smolder propagation, for the fuel and geornel_ we
are studying. The results of our preliminary low
gravity tests, looking at the same fuel and
geometry in a 2.2 second drop tower, indicate that
there are differences in the behavior of smolder over
the same range of low flowrates, when compared
with normal g tests. In order to mdy verify these
results for steady smolder over the range of
flowrates which should be studied, we need to move
to a facility which allows longer periods of low
gravity.

Acknowledgements
We would like to thank Prof. Patrick Pagni for
helpful discussions during the initial phases of this
work, Sandra Olson for helpful suggestions and
discussions throughout, Mike Johnston for
assistance with the drop tests, and Dick Jensen for
assistance with the normal gravity tests.

6

¢B



7

Refe:ences

I. Ohlemiller, T. "Modeling of Smoldering
Combustion Propagation', Pro_-ess in Ener_,y and
Combustion Science, 11, pp.277-310, 1986

2. Dosanj, S.S., Pagni, PJ. & A.C. Fernandez.
Pello, "ForcedCocurrent Smoldering
Combustion', Combustion and Flame, 68,
pp.131-142, 1987

3. Dosanj, S.S., Peterson, J., Fernandez-Pello,
A.C. & PJ. Pagni, "Buoyancy Effects on
Smoldering Combustion", _, 13,
pp.689-696, 1987

4. McCarter, RJ., "Smoldering Combustionof
PolyurethaneFoam', _LIIlgl_Q,f__Zg_a_

3, pp.128-140, 1976

5. Ohlemiller, T. & F.E. Rogers "A Survey of
Several Factors Influencing Smoldering
Combustion in Flexible and Rigid Polymer
Foams', Journal of Fire andFlammability, 9,
pp.489-509, 1978

Insulation', NBS Report NBSIR 85-3212, October
1985

12. Sega, S., Sato, K., Takaoka, F. & K. Saburi
"Transition From Smoldednng to Flaming with
High Temperature Air Flow', Annual Meeting of
the JapaneseAssociationof F'ueScienceand
Engineenng, pp.145-148, 1988

6. Rogers, F.E. and T. Ohlemiller "Smolder
Characteristics of Flexible Polyurethane Foams',
3ournal of Fire and Flammability. I I, pp.32-44,
I980

7. Ohlemiller, T., BeUan, I. and F.E. Rogers "A
Model of Smoldering Combustion Applied to
Flexible Polyurethane Foams', .C,.17J_gi_LaRd
Flame, 36, pp.197-215, 1979

8. Ortiz-Molina, M.G., Toong, T.Y., Mouss&
N.A., and G.C. Tereso, "Smoldering Combustion
of Flexible Polyurethane Foams and Its Transition
to Flaming or Extinguishment', Seventeenth
Svmvosium (International3 on Combustion, The

Combustion Institute, pp. 1191-1200, 1979

9. Jumper, G.Y. and R.L.P. Custer "Ignition in
Microgravity', AJAA-89-0180, 271/1Aerospace
Sciences Meeting, AIAA, Reno, Nevada, January,
1989

10. Summerfield, M., Messina, N.A. & L.S.
Ingrain, "Definition of Smoldering Experiments
for Spacelab', NASA CR-159528, January, 1979

11. Ohlemiller, TJ., "Forced Smolder Propagation
and Transition to Flaming in Cellulosic



gl



PAPER 11

"SMOLDERING COMBUSTION UNDER LOW GRAVITY CONDITIONS"

Cantwell, E.R., and Fernandez-Pello, A.C.

1990 Fall Technical Meeting, Western States Section / Combustion Institute,
San Diego, California, October 1990.

Also presented as Poster #P245, Twenty-Third International Symposium on
Combustion, Orleans, France, July 1990.





Smoldering Combustion Under Low Gravity
Conditions

E.R. Cantwell and A.C. Femandez-Pello

Department of Mechanical Engineering
University of California

Berkeley, Ca. 94720

PAPER 90-41

Presented at the 1990 Fall Meeting of the Western States Section of the
Combustion Institute, San Diego, Ca., October, 1990





Smol_ring combustion experiments have been conducted in normal gravity, in a

Drop Tower (the NASA Lewis Research Center 2.2 second drop tower) and in an aircraft
following a parabolic waj_ory (NASA KC-135), to observe the effects of buoyancy (and
the absence of buoyancy) on opposed smoldering of samples of polyurethane foam. In

opposed smolder the smolder.reaction.propagates in a _on.oppo.sed to that of the
forced oxidizer flow. Initial information on smolder be_or m a mlcrograv_ty

environment has been obtained and compared with normal gravity tests. The slow process
of smolder (approximately 1 mm/sec) allowed somewhat limited data acquisition in the
drop tower tests (where 2.2 seconds of microgravity are available). In the KC-135 tests
(30 seconds of low gravity for up to 40 parabolas), considerably more data was obtained,
as a single sample was smoldered for an entire flight, with data acquisition occurring
during both high-g and low-g portions of each flight. The experimental results show that
buoyancy affects both species u'ansport and transfer of heat to and from the reaction zone.
Results from parabolic fright tests indicate that at the reaction zone wanspon of 02 is
dominant, and the consequent reaction temperature decreases in microgravity. Away from
the reaction zone, temperature increases in microgravity due to the lack of convecuve

cooling. All of these effects are loss noticeable as the flow velocity is increased, and as the
reaction propagates more toward the interior of the foam samples.

INTRODUCTION

This paper summarizes a preliminary analysis of the results of a study of
smoldering combustion under low gravity conditions. Smolder is dot-reed as a non-

flaming, exothermic surface combustion reactionl. It commonly occurs in porous and
permeable combustible materials, and is distinguished from other combustion reactions by
its low temperatures, lack of flame and slow propagation velocities. After smolder has
been initiated, it propagates through the fuel by wansferring heat, released during
heterogeneous oxidation of the fuel, toward the virgin material. Heat is transferred by
conduction, convection and radiation. Additionally, oxidizer, transported to the reaction

zone by diffusion and convection, must be present in sufficient quantity to allow the

reaction to _.roceed. An excellent review of smolder combustion modeling is that of
Ohlemiller • A limited number of experimental and theoretical studies on the effect of

buoyancy on steady smolder have been publisbed2, 3. Since smolder is possible at air/fuel

ratios only a few percent of stoichiometric3, heat release and smolder velocities may be,

relatively, quite low. Convective flow of gases, either free or forced, may therefore have a
significant effect on smolder. In an effort motivated primarily by the need to understand
the possible behavior of smoldering combustion m a space-based environment where
natural convection will not be present, we have been studying the role of buoyancy in
smolder initiation and propagation through porous combustible materials. The particular

fuel used for all of these studies is polyurethane foam, which has been studied previously
for it s smoldering properties 5,6,7,8,9.

In the current investigations, smoldering combustion experiments have been

conducted in normal gravity, and at low gravity in a_t Tower (the NASA Lewis
Research Center 2.2 second drop tower) and in an " foUowing a parabolic trajectory
(NASA KC-135), to observe the effects of buoyancy (and the absence of buoyancy) on

opposed smoldering of samples of polyurethane foam. Initial information on smolder
behavior in a microgravity environment has been obtained and compared with normal

gravity tests. The sl0w process of smolder (approximately 1 mm/sec) allowed only limited
data acquisition in the drop tower tests (where 2.2 seconds of microgravity are available).
In the KC-135 tests (30 seconds of low gravity for up to 40 parabolas), considerably more

data was obtained, as a single sample was smoldered for an entire flight, with data
acquisition occurring during both high-g and low-g portions of each flight. The results of



the KC-135 investigations will be the focusofthispaper.The other investigations have

beenreportedon indetailinapreviouspaper4,and willonlybe summarizedhere.

EXPERIMENTAL DETAILS

All tests involve downward propagation of reverse or opposed smolder of
polyurethane foam. Figure I shows a schematic of opposed downward smolder. In this
configuration,thesmolderreactionisignitedatthetopofthefuelsampleand propagates
downward against an opposing flow of air. All tests, at both normal and low gravity, were
conducted on cubic samples of polyurethane foam, four inches on a side. Figure 2 shows
a schematic of the test apparatus used for all of these experiments. A foam sample was
ignited at the top. The sides of the test apparatus holding the foam were well insulated.
One end of the foam container was fitted to an air duct through which a flow of air forced.
Compressed standard air was used, and flow was controlled by either a Matheson 603/604
rotameter (ground tests) or a precision metering valve (drop tower tests and KC-135
tests).Ground tests were conducted in a chemical fume hood, and in both the Drop Tower
and KC-135 a combustion chamber (1.5'X1.5'XT) was used.

Polyurethane foam was chosen as our fuel because it maintains its shape as it
smolders and it is a realistic test fuel for spacecraft fire hazards. Smolder was initiated

from the top in the followin$ manner:. A nichrome wire coil, through which a 10V current
was passed, was placed against 3 layers of cotton linen (1 1/2 "square) centered in the
open end of the sample. The wire was left on for approximately 40 seconds to ensure that
the top cloth layer had begun to smolder. Smolder proceeded through the three layers of
cloth and into the foam sample below. It appears that the role of the cotton is to keep the
smolder initiation region sufficiently insulated to prevent heat losses which may cause the
reactiontoextinguish.Thisproveda reliableandrepeatablemethod forsmolderinitiation
forallphasesofthistesting.

TemperaturedataweretakenwithK-typethcrmocouplesplacedat1/2"intervals
alongtheccnterlineofthesamples.The temperaturehistoriesofthethermocoupleswas
usedtodeterminebothpeak temperatureandsmoldervelocity(inthecaseswhere datawas
sufficientlysteadytoderivei0asa functionoftimeand airflowrate.Smoldervelocity
was determinedby takingtheratioofthedistancebetweentwo thermocouplesandthe
delaytimeofarrivalofthesmolderfrontbetweentheseth_ples. Both sourcesof
informationwere usedtoanalyzethecharacteristicsofthesmolderpropagationthroughthe
samples,and theirvariationwiththeenvironment.Inparticular,fortheKC-135
experiments,sampleswere ignitedinnonml gravityjustpriortotheinitiationofthef'n'st
parabola.Inordertoobtainlow gravity,theKC-135 fliesa seriesofparabolasconsisting
ofa 2G accelerationupwardsfollowedby a low gravityperiodofabout30 seconds.
During eachflight,a singlesamplewas ignitedand smoldereduntilitextinguishedorwas
extinguished(-Ihr).

RESULTS FROM PREVIOUS WORK

From our ground tests, where studies were conducted on one-dimensional reverse
smolder, a range of low flow rates where identified where buoyancy affects smolder
propagation, for the fuel and geometry we are using. Figure 3 shows smolder velocity vs.
forced flow velocity for downward smold_. The data l_s to the identification of a range
of low flow rates where buoyancy may be the mechanism causing differences in the -
results. Preliminary low gravity tests conducted in a drop tower, looking at the same fuel
and geometry, indicated that there were differences in the behavior of smolder near the
ignition zone over the same range of low flow rates when compared with normal gravity
results. Figure 4 shows results from these tests. Though this preliminary work showed
some apparent trends, it was clear that, because of the very slow propagation rates of
smolder, longer low gravity times were needed to begin to define better the actual behavior
of smolder in a low gravity environment.
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RESULTS FROM CURRENT WORK

A series of four flights on the KC-135 were completed, each one with fixed
experimental conditions. Two of the experiments with forr.ed flow velocities of 0.14 and
0.22 cm/sec provided good data. A third experiment with forced flow of .05 cm/sec
provided a small amount of additional data. A description of these results follows.

Near thereactionZone

Figure 5 shows a sample ofa complete days flight(0.14cm/sec) with a

thermocouple u'aeeand accelerationdataoverlaidtogethervs.time. In thisparticularcase,

the smolder reactionisapproachingand passingby the thetmocouple as thissetof

parabolasisflown. Data likethiswas obtainedforallthreeforcedflow ratesdescribed

above. As well,data_ thenntr,ouplesahead of thereaction(virginfoam) and behind
thereactionzone (thecharregion)were obtainedfor0.14and 0.22 cm/sec. From these

data sets,itwas determined that,atleastfortheregionquitecloseto thereactionzone,
thereareseveraltime intervalsw_ch areevident.The first,calledtransitionI,was thetime

lagbetween theonsetof 0(3 and an abruptchange inthesignof thetemperaturegradient.
Transition2 isthetime lag between theend of0G and thenextchange in signof the

temperaturegradient.The uends of thesetime lagsare summarized inTable I.

_.2.fzm..l_

thermocouzfle
I I/2"from

wp surface

Forced Flow Rate

.05 cm/sec

.14cm/sec

.22cm/sec

.14cm/sec

.22cm/sec

Parabola # Tra_,.._ifion 1 (sec) Transition 2 fsec)

o.a .oo

2 3.2 2.5

3 2.5 2.5
4 2.5 2.5
I 5 5
2 3.5 3.4
3 3.4 2.8
4 1.8 0
5 1.8 1.8
6 ?
1 8 4
2 2.5 2.5

3 1.2 1.2
4 6.5 5.0

2 8.5 5.3

3 5.3 4.2
4 4.0 4.2

5 6.1 5.1
I 9.8 5.0

2 4.2 4.0
3 4.0 2.5
4 12 10

TableI

Note that when smolder occurs further inside the porous body the time it takes to be
affected by changes in gravity is longer. This is due to the resistance presented to the air
passing through a longer sample prior to reaching the reaction zone. It appears that the
effect of flow rate is that higher forcing flows have longer time lags for either transition.
This makes sense qualitatively, since the effects of buoyancy are a more significant portion
of the overall process for lower forcing flow rates.

In addition to time lags, lines have been fit to the data for the periods just prior to
entering 0G and in 0G. These are tabulated as slopes (/_Ff0t) in Table 2, and Figure 6



showsanexampleof whatportionsof thethermocouple traces these values are derived
from As shown in Table 2, for lower forced flow rates in regions near the reaction zone,
temperature rises faster just prior to the initiation of 0G (this is the pull-up, where
acceleration is 2G's) and falls faster during 0G (this is shown graphically in Figure 7).
This shows that, for the higher forced flow velocities, the effects; of 2G or 0(3 arc less and

less noticeable. This is an indication that we are moving toward pure forced flow
dominated smolder.

E_.._I-]_._J_ ThermocoupleLocation _
near rescl/on zone

.05cm/sec I/2" +.945 -I.93

.14¢m/sec +.690 -1.58

.22cm/sec +.355 -1.26

.14cm/sec 1 I/2"

0.2cm/sec
away fmcn reaction zone

.05cm/sec 1 I/2"

.14cm/sec 2"

.22cm/sec 2"

.14cm/sec I/2"

I I/2"
.22cm/sec I/'2"

1 I/2"

+.904 -0.71

+1.16 -0.80

-.148 +.263

-.019 +.289

-.228 +.480
-.I13 +.658

Table 2 - Averages of _I'/_ Over Four Parabolas
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Away From theReaction Zone

Figure 8 shows thennocouple and accelerationn'aceswhich are an example of

resultsfrom thechar region.As can be seen from thisfigure,as well asTable 2,theeffect

of the2G pull-upisminimal but during0G thetemperatureclearlygoes up. There isno
discernabletimelag fordatafrom theseregions,and theeffectof forcedflow rateseem to

be thatthe temperatureriseduring0G issmallerthehigherthe forcedflow velocity.

Qualitatively,thismakes sense,sincethe highertheforcedvelocity,thesmallerthe
percentageof overallconvectiveheatlossthatisdue tobuoyant convection. What isclear

is that in these regions away from the reaction zone the reduced heat losses in 0(3 result in
higher fuel temperatures.

CONCLUDING REMARKS

These data show significant variation, for smolder behavior in 0G, from that in a
normal or higher gravity environment. For all forced flow rates examined, there is a
greaterchange insmolder during0G thanduring2(3 accelerations.While the 2G pull-ups

seemed toenhance smolder (seeFigure6),thereactionitselfwas always significantly

depressed in 0(3. The peak smolder temperature seen during these experiments was
somewhat higher than that seen in ground-based experiments on smoldering polyurethane
foamS.This is due to the high G maneuvers, which enhance oxygen flow to the reaction ....

zone. This, and the response of the reaction to 0(3 indicate that this strong smolder reaction
is oxygen supply limited. These tests give some possible evidence that smolder will simply
extinguish in low gravity environments. But there are several factors which must still be
better understood. The tests also show an apparent insulating effect, seen in the

temperature rise in char regions during 0(3, which may conu'ibute to smolder sustainability
at a lower temperature than those in these tests. The KC-135 environment will never allow
examination of this because the 2G pull-ups enhance the smolder reaction prior to each 0G

1



period. This would of course be dependent on sufficient available oxygen to sustain a low

temperature smolder reaction, since there is, particularly in b.igh porosity fuels such as low
density foams, a su'ong coupling ber, vecn heat transfer and oxygen supply in a smolder

reaction. I0. It is unknown at this time whether there is sufficient oxygen in the pores of a
foam fuel to sustain smolder (i.e. a purely diffusion controlled reaction).
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Data From Normal Gravity Tests
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Data From .An Entire Flight
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